982 resultados para Rb fountain frequency standard
Resumo:
Occupational standards concerning the allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries at national levels. With the integration of the European Union, a need exists for establishing harmonized Occupational Exposure Limits. For analytical developments, it is apparent that methods for speciation or fractionation of carcinogenic metal compounds will be of increasing practical importance for standard setting. Criteria of applicability under field conditions, cost-effectiveness, and robustness are practical driving forces for new developments. When the European Union issued a list of 62 chemical substances with Occupational Exposure Limits in 2000, 25 substances received a 'skin' notation. The latter indicates that toxicologically significant amounts may be taken up via the skin. Similar notations exist on national levels. For such substances, monitoring concentrations in ambient air will not be sufficient; biological monitoring strategies will gain further importance in the medical surveillance of workers who are exposed to such compounds. Proceedings in establishing legal frameworks for a biological monitoring of chemical exposures within Europe are paralleled by scientific advances in this field. A new aspect is the possibility of a differential adduct monitoring, using blood proteins of different half-life or lifespan. This technique allows differentiation between long-term mean exposure to reactive chemicals and short-term episodes, for example, by accidental overexposure. For further analytical developments, the following issues have been addressed as being particularly important: New dose monitoring strategies, sensitive and reliable methods for detection of DNA adducts, cytogenetic parameters in biological monitoring, methods to monitor exposure to sensitizing chemicals, and parameters for individual susceptibilities to chemical toxicants.
Resumo:
The benefits of using eXtensible Business Reporting Language (XBRL) as a business reporting standard have been widely canvassed in the extant literature, in particular, as the enabling technology for standard business reporting tools. One of the key benefits noted is the ability of standard business reporting to create significant efficiencies in the regulatory reporting process. Efficiency-driven cost reductions are highly desirable by data and report producers. However, they may not have the same potential to create long-term firm value as improved effectiveness of decision making. This study assesses the perceptions of Australian business stakeholders in relation to the benefits of the Australian standard business reporting instantiation (SBR) for financial reporting. These perceptions were drawn from interviews of persons knowledgeable in XBRL-based standard business reporting and submissions to Treasury relative to SBR reporting options. The combination of interviews and submissions permit insights into the views of various groups of stakeholders in relation to the potential benefits. In line with predictions based on a transaction-cost economics perspective, interviewees who primarily came from a data and report-producer background mentioned benefits that centre largely on asset specificity and efficiency. The interviewees who principally came from a data and report-consumer background mentioned benefits that centre on reducing decision-making uncertainty and decision-making effectiveness. The data and report consumers also took a broader view of the benefits of SBR to the financial reporting supply chain. Our research suggests that advocates of SBR have successfully promoted its efficiency benefits to potential users. However, the effectiveness benefits of SBR, for example, the decision-making benefits offered to investors via standardised reports, while becoming more broadly acknowledged, remain not a priority for all stakeholders.
Resumo:
Objective Migraine is a highly disabling disease affecting a significant proportion of the Australian population. The Methylenetetrahydrofolate Reductase (MTHFR) C677T variant has been associated with increased levels of homocysteine and risk of migraine with aura (MA). Folic acid, Vitamin B6 and B12 supplementation has been previously shown to reduce increased levels of homocysteine and decrease migraine symptoms. However the influence of dietary folate intake on migraine has been unclear. The aim of the current study was to analyse the association of dietary folate intake in the form of dietary folate equivalent (DFE), folic acid (FA) and total food folate (TFF) on migraine frequency, severity and disability. Methods A cohort of 141 adult females of Caucasian descent with MA was genotyped for the MTHFRC677T variant using restriction enzyme digestion. Dietary folate information was collected from all participants and analysed using the “FoodWorks” 2009 package. Folate consumption was compared to migraine frequency, severity and disability using linear regression. Results A significant inverse relation was observed between DFE [R2= 0.201, P= 0.045, CI (-0.004, -0.001)] and FA [R2= 0.255, P= 0.036, 95% CI (-0.009, -0.002)] consumption and migraine frequency. It was also observed that in individuals with the CC genotype for the MTHFR C677T variant, migraine frequency was significantly linked to FA consumption [R2= 0.077, P= 0.029, CI (-0.009, -0.005)]. Conclusions The results from this study indicate that folate intake in the form of folic acid may influence migraine frequency in female MA sufferers.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
Purpose: The purpose of this work was to evaluate the patient-borne financial cost of common, adverse breast cancer treatment-associated effects, comparing cost across women with or without these side-effects. Methods: 287 Australian women diagnosed with early-stage breast cancer were prospectively followed starting at six months post-surgery for 12 months, with three-monthly assessment of detailed treatment-related side effects and their direct and indirect patient costs attributable to breast cancer. Bootstrapping statistics were used to analyze cost data and adjusted logistic regression was used to evaluate the association between costs and adverse events from breast cancer. Costs were inflated and converted from 2002 Australian to 2014 US dollars. Results: More than 90% of women experienced at least one adverse effect (i.e. post-surgical issue, reaction to radiotherapy, upper-body symptoms or reduced function, lymphedema, fatigue or weight gain). On average, women paid $5,636 (95%CI: $4,694, $6,577) in total costs. Women with any one of the following symptoms (fatigue, reduced upper-body function, upper-body symptoms) or women who report ≥4 adverse treatment-related effects, have 1.5 to nearly 4 times the odds of having higher healthcare costs than women who do not report these complaints (p<0.05). Conclusions: Women face substantial economic burden due to a range of treatment-related health problems, which may persist beyond the treatment period. Improving breast cancer care by incorporating prospective surveillance of treatment-related side effects, and strategies for prevention and treatment of concerns (e.g., exercise) has real potential for reducing patient-borne costs.
Resumo:
Background: Hot air ballooning incidents are relatively rare, however, when they do occur they are likely to result in a fatality or serious injury. Human error is commonly attributed as the cause of hot air ballooning incidents; however, error in itself is not an explanation for safety failures. This research aims to identify, and establish the relative importance of factors contributing towards hot air ballooning incidents. Methods: Twenty-two Australian Ballooning Federation (ABF) incident reports were thematically coded using a bottom up approach to identify causal factors. Subsequently, 69 balloonists (mean 19.51 years’ experience) participated in a survey to identify additional causal factors and rate (out of seven) the perceived frequency and potential impact to ballooning operations of each of the previously identified causal factors. Perceived associated risk was calculated by multiplying mean perceived frequency and impact ratings. Results: Incident report coding identified 54 causal factors within nine higher level areas: Attributes, Crew resource management, Equipment, Errors, Instructors, Organisational, Physical Environment, Regulatory body and Violations. Overall, ‘weather’, ‘inexperience’ and ‘poor/inappropriate decisions’ were rated as having greatest perceived associated risk. Discussion: Although errors were nominated as a prominent cause of hot air ballooning incidents, physical environment and personal attributes are also particularly important for safe hot air ballooning operations. In identifying a range of causal factors the areas of weakness surrounding ballooning operations have been defined; it is hoped that targeted safety and training strategies can now be put into place removing these contributing factors and reducing the chance of pilot error.
Resumo:
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
Resumo:
The intermediate leaf-nosed bat (Hipposideros larvatus) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis, which is suggested to be a species distinct from Hipposideros larvatus. Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
Background The frequency of prescribing potentially inappropriate medications (PIMs) in older patients remains high despite evidence of adverse outcomes from their use. Little is known about whether admission to hospital has any effect on appropriateness of prescribing. Objectives This study aimed to identify the prevalence and nature of PIMs and explore the association of risk factors for receiving a PIM. Methods This was a prospective study of 206 patients discharged to residential aged care facilities (RACFs) from acute care. All patients were aged at least 70 years and were admitted between July 2005 and May 2010; their admission and discharge medications were evaluated. Results Mean patient age was 84.8 ± 6.7 years; the majority (57%) were older than 85 years and mean (SD) Frailty Index was 0.42 (0.15). At least one PIM was identified in 112 (54.4%) patients on admission and 102 (49.5%) patients on discharge. Of all medications prescribed at admission (1728), 10.8% were PIMs and at discharge of 1759 medications, 9.6% were PIMs. Of total 187 PIMs on admission, 56 (30%) were stopped and 131 were continued; 32 new PIMs were introduced. Of the potential risk factors considered, in-hospital cognitive decline and frailty status were the only significant predictors of PIMs. Conclusion Although, admission to hospital is an opportunity to review the indications for specific medications, a high prevalence of inappropriate drug use was observed. The only associations with PIM use were the frailty status and in-hospital cognitive decline. Additional studies are needed to further evaluate this association.
Resumo:
Evidence is needed for the acceptability and user preferences of receiving skin cancer-related text messages. We prepared 27 questions to evaluate attitudes, satisfaction with program characteristics such as timing and spacing, and overall satisfaction with the Healthy Text program in young adults. Within this randomised controlled trial (age 18-42 years), 546 participants were assigned to one of three Healthy Text message groups; sun protection, skin self-examination, or attention-control. Over a 12-month period, 21 behaviour-specific text messages were sent to each group. Participants’ preferences were compared between the two interventions and control group at the 12-month follow-up telephone interview. In all three groups, participants reported the messages were easy to understand (98%), provided good suggestions or ideas (88%), and were encouraging (86%) and informative (85%) with little difference between the groups. The timing of the texts was received positively (92%); however, some suggestions for frequency or time of day the messages were received from 8% of participants. Participants in the two intervention groups found their messages more informative, and triggering behaviour change compared to control. Text messages about skin cancer prevention and early detection are novel and acceptable to induce behaviour change in young adults.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
Large concentrations of magnetite in sedimentary deposits and soils with igneous parent material have been reported to affect geophysical sensor performance. We have undertaken the first systematic experimental effort to understand the effects of magnetite for ground-penetrating radar (GPR) characterization of the shallow subsurface. Laboratory experiments were conducted to study how homogeneous magnetite-sand mixtures and magnetite concentrated in layers affect the propagation behavior (velocity, attenuation) of high-frequency GPR waves and the reflection characteristics of a buried target. Important observations were that magnetite had a strong effect on signal velocity and reflection, at magnitudes comparable to what has been observed in small-scale laboratory experiments that measured electromagnetic properties of magnetite-silica mixtures. Magnetite also altered signal attenuation and affected the reflection characteristics of buried targets. Our results indicated important implications for several fields, including land mine detection, Martian exploration, engineering, and moisture mapping using satellite remote sensing and radiometers.