945 resultados para Rare earth compounds
Resumo:
Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N~90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of 241-Am could be measured directly for the first time.
Resumo:
Mixtures of Rare Earth Elements (REE) have been used as animal growth-promoters on a large scale in China during the last 20 years. Numerous studies carried out in China claim it produces quite sensational growth-promoting effects in all categories of farm animals. To explore the question of whether REE's might prove suitable as a growth-promoter under western keeping conditions, feeding experiments were performed on pigs and poultry. The animals received a typical diet, supplemented with REE salts in concentrations between 75 and 300 mg/kg feed. Weight-gain, feed-intake, feed-conversion and (where applicable) laying parameters were observed. It was shown that in pigs receiving feed supplemented with REEs, an increase in daily weight gain of up to 19% and an improvement in feed-conversion of up to 11% can be achieved, whereas, for poultry, no positive effects on growth or productivity of the animals could be observed. Testing of important organs via Neutron Activating Analysis (NAA) showed a minute accumulation of REE, principally in liver and bones. Analysis of the poultry gut-flora, using selective media, showed that the main microorganism populations of the alimentary canal were unaffected by feed-supplementation with REE.
Resumo:
A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value at 0-1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixt. thereof, and the scintillation crystal is formed from a melt having a concn. of such elements or mixt. thereof of at least ∼0.02%. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resoln. properties. In a further embodiment, a radiation detection app. can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection app. can be useful in a variety of applications.
Resumo:
The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes. From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs. Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.
Resumo:
Various types of proton-irradiated lead–bismuth eutectic (LBE) samples from the MEGAPIE prototype spallation target were analyzed concerning their content of 148Gd, 173Lu, and 146Pm by use of α- and γ-spectrometry. A radiochemical separation procedure was developed to isolate the lanthanide fraction and to prepare thin samples for α-ray measurement. The results prove a substantial depletion of these three elements in bulk samples, whereas accumulation on the LBE/steel-interfaces was observed. The amount of material accumulated on surfaces was roughly estimated by relating the values measured on the sample surfaces to the total surface of the inner target walls. The amount of 148Gd, 173Lu, and 146Pm was then quantified by summing up the contributions from every sample type. The results show a reasonable agreement with theoretical predictions. The obtained results are of utmost importance for the evaluation of the performance of high-power spallation targets, especially concerning the residual nuclide production, the physicochemical behavior of the produced radionuclides during operation, and in terms of an intermediate or final disposal.
Resumo:
Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.