976 resultados para Rabies virus genome
Resumo:
In industrial countries, Hepatitis E virus (HEV) transmission to humans is predominantly assumed to be a zoonotic infection. Recently, it has been demonstrated that about 50% of domestic pigs in Germany carry HEV-specific antibodies. However, further investigations concerning the distribution of HEV in different age groups of German domestic pigs, phylogenetic analyses and the viral load in the porcine liver are still pending. Liver samples of all age groups from herds in a pig-dense region in north-western Germany were investigated for the presence and quantity of HEV RNA and subsequently genotyped. Out of 251 liver samples, 34 contained ORF2-specific RNA, whereas 19 samples were positive using ORF1-specific primers, resulting in an overall detection rate of 13.5% and 7.6%, respectively. Especially nursery pigs and growers were tested positive for viral RNA. Furthermore, determination of the HEV copy numbers revealed high replication levels. Up to 10(9) genome copies per g of liver tissue could be detected suggesting a likely high degree of viral spread to the environment. In the HEV-positive liver samples we found no hints for pathohistological changes reflecting the HEV status.The HEV sequences showed marked diversity but could be assigned to HEV genotype 3 without exception. However, by comparing two different genomic fragments, we found indications for infections with two different HEV variants in domestic pigs. Apart from this, the current study confirms the outcome of our recent serological HEV survey and for the first time gives direct proof of HEV infections in the German domestic pig population.
Resumo:
Productive Epstein‐Barr virus (EBV) replication characterizes hairy leukoplakia, an oral epithelial lesion typically occurring in individuals infected with human immunodeficiency virus (HIV). Serial tongue biopsy specimens were obtained from HIV‐infected subjects before, during, and after valacyclovir treatment. EBV replication was detected by Southern hybridization to linear terminal EBV genome fragments, reverse‐transcriptase polymerase chain reaction amplification of EBV replicative gene transcripts, immunohistochemical detection of EBV replicative protein, and in situ hybridization to EBV DNA. EBV replication was detected in both hairy leukoplakia and normal tongue tissues. Valacyclovir treatment completely abrogated EBV replication in vivo, resulting in resolution of hairy leukoplakia when it was present. EBV replication returned in normal tongue epithelial cells after valacyclovir treatment. These data suggest that normal oral epithelium supports persistent EBV infection in individuals infected with HIV and that productive EBV replication is necessary but not sufficient for the pathogenesis of oral hairy leukoplakia.
Resumo:
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.
Resumo:
Cytoplasmic polyhedrosis virus (CPV) is unique within the Reoviridae family in having a turreted single-layer capsid contained within polyhedrin inclusion bodies, yet being fully capable of cell entry and endogenous RNA transcription. Biochemical data have shown that the amino-terminal 79 residues of the CPV turret protein (TP) is sufficient to bring CPV or engineered proteins into the polyhedrin matrix for micro-encapsulation. Here we report the three-dimensional structure of CPV at 3.88 A resolution using single-particle cryo-electron microscopy. Our map clearly shows the turns and deep grooves of alpha-helices, the strand separation in beta-sheets, and densities for loops and many bulky side chains; thus permitting atomic model-building effort from cryo-electron microscopy maps. We observed a helix-to-beta-hairpin conformational change between the two conformational states of the capsid shell protein in the region directly interacting with genomic RNA. We have also discovered a messenger RNA release hole coupled with the mRNA capping machinery unique to CPV. Furthermore, we have identified the polyhedrin-binding domain, a structure that has potential in nanobiotechnology applications.
Resumo:
Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.
Resumo:
The initial step in coronavirus-mouse hepatitis virus (MHV) replication is the synthesis of negative strand RNA from a positive strand genomic RNA template. Our approach to studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the protein(s) which recognizes these signals at the 3$\sp\prime$ end of genomic RNA of MHV. To determine whether host cellular and/or virus-specific proteins interact with the 3$\sp\prime$ end of the coronavirus genome, an RNase T$\sb1$ protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from either mock- or MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. A conserved 11 nucleotide sequence UGAAUGAAGUU at nucleotide positions 36 to 26 from the 3$\sp\prime$ end of genomic RNA was identified to be responsible for the specific binding of host proteins, by using a series of RNA probes with deletions and mutations in this region. The RNA probe containing the 11 nucleotide sequence bound approximately four host cellular proteins with a highly labeled 120 kDa and three minor species with sizes of 103, 81 and 55 kDa, assayed by UV-induced covalent cross-linking. Mutation of the 11 nucleotide motif strongly inhibited cellular protein binding, and decreased the amount of the 103 and 81 kDa proteins in the complex to undetectable levels and strongly reduced the binding of the 120 kDa protein. Less extensive mutations within this 11 nucleotide motif resulted in variable decreases in RNA-protein complex formation depending on each probe tested. The RNA-protein complexes observed with cytoplasmic extracts from MHV-JHM-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were indistinguishable to those observed with extracts from uninfected cells.^ To investigate the possible role of this 3$\sp\prime$ protein binding element in viral RNA replication in vivo, defective interfering RNA molecules with complete or partial mutations of the 11 nucleotide conserved sequence were transcribed in vitro, transfected to host 17Cl-1 cells in the presence of helper virus MHV-JHM and analyzed by agarose gel electrophoresis, competitive RT-PCR and direct sequencing of the RT-PCR products. Both negative strand synthesis and positive strand replication of DI RNA were affected by mutation that disrupts RNA-protein complex formation, even though the 11 mutated nucleotides were converted to wild type sequence, presumably by recombination with helper virus. Kinetic analysis indicated that recombination between DI RNA and helper virus occurred 5.5 to 7.5 hours post infection when replication of positive strand DI RNA was barely observed. Replication of positive strand DI RNAs carrying partial mutations within the 11 nucleotide motif was dependent upon recombination events after transfection. Replication was strongly inhibited when reversion to wild type sequence did not occur, and after recombination, reached similar levels as wild type DI RNA. A DI RNA with mutation upstream of the protein binding motif replicated as efficiently as wild type without undergoing recombination. Thus the conserved 11 nucleotide host protein binding motif appears to play an important role in viral RNA replication. ^
Resumo:
Temperature sensitive (ts) mutant viruses have helped elucidate replication processes in many viral systems. Several panels of replication-defective ts mutants in which viral RNA synthesis is abolished at the nonpermissive temperature (RNA$\sp{-})$ have been isolated for Mouse Hepatitis Virus, MHV (Robb et al., 1979; Koolen et al., 1983; Martin et al., 1988; Schaad et al., 1990). However, no one had investigated genetic or phenotypic relationships between these different mutant panels. In order to determine how the panel of MHV-JHM RNA$\sp{-}$ ts mutants (Robb et al., 1979) were genetically related to other described MHV RNA$\sp{-}$ ts mutants, the MHV-JHM mutants were tested for complementation with representatives from two different sets of MHV-A59 ts mutants (Koolen et al., 1983; Schaad et al., 1990). The three ts mutant panels together were found to comprise eight genetically distinct complementation groups. Of these eight complementation groups, three complementation classes are unique to their particular mutant panel; genetically equivalent mutants were not observed within the other two mutant panels. Two complementation groups were common to all three mutant panels. The three remaining complementation groups overlapped two of the three mutant sets. Mutants MHV-JHM tsA204 and MHV-A59 ts261 were shown to be within one of these overlapping complementation groups. The phenotype of the MHV-JHM mutants within this complementation class has been previously characterized (Leibowitz et al., 1982; Leibowitz et al, 1990). When these mutants were grown at the permissive temperature, then shifted up to the nonpermissive temperature at the start of RNA synthesis, genome-length RNA and leader RNA fragments accumulated, but no subgenomic mRNA was synthesized. MHV-A59 ts261 produced leader RNA fragments identical to those observed with MHV-JHM tsA204. Thus, these two MHV RNA$\sp{-}$ ts mutants that were genetically equivalent by complementation testing were phenotypically similar as well. Recombination frequencies obtained from crosses of MHV-A59 ts261 with several of the gene 1 MHV-A59 mutants indicated that the causal mutation(s) of MHV-A59 ts261 was located near the overlapping junction of ORF1a and ORF1b, in the 3$\sp\prime$ end of ORF1a, or the 5$\sp\prime$ end of ORF1b. Sequence analysis of this junction and 1400 nucleotides into the 5$\sp\prime$ end of ORF1b of MHV-A59 ts261 revealed one nucleotide change from the wildtype MHV-A59. This substitution at nucleotide 13,598 (A to G) was a silent mutation in the ORF1a reading frame, but resulted in an amino acid change in ORF1b gene product (I to V). This amino acid change would be expressed only in the readthrough translation product produced upon successful ribosome frameshifting. A revertant of MHV-A59 ts261 (R2) also retained this guanidine residue, but had a second substitution at nucleotide 14,475 in ORF1b. This mutation results in the substitution of valine for an isoleucine.^ The data presented here suggest that the mutation in MHV-A59 ts261 (nucleotide 13,598) would be responsible for the MHV-JHM complementation group A phenotype. A second-site reversion at nucleotide 14,475 may correct this defect in the revertant. Sequencing of gene 1 immediately upstream of nucleotide 13,296 and downstream of nucleotide 15,010 must be conducted to test this hypothesis. ^
Resumo:
Despite the evidence for a genetic predisposition to develop equine sarcoids (ES), no whole genome scan for ES has been performed to date. The objective of this explorative study was to identify chromosome regions associated with ES. The studied population was comprised of two half-sibling sire families, involving a total of 222 horses. Twenty-six of these horses were affected with ES. All horses had been previously genotyped with 315 microsatellite markers. Quantitative trait locus (QTL) signals were suggested where the F statistic exceeded chromosome-wide significance at P < 0.05. The QTL analyses revealed significant signals reaching P < 0.05 on equine chromosome (ECA) 20, 23 and 25, suggesting a polygenic character for this trait. The candidate regions identified on ECA 20, 23 and 25 include genes regulating virus replication and host immune response. Further investigation of the chromosome regions associated with ES and of genes potentially responsible for the development of ES could form the basis for early identification of susceptible animals, breeding selection or the development of new therapeutic targets.
Resumo:
The lack of a permissive cell culture system hampers the study of human parvovirus B19 (B19V). UT7/Epo is one of the few established cell lines that can be infected with B19V but generates none or few infectious progeny. Recently, hypoxic conditions or the use of primary CD36+ erythroid progenitor cells (CD36+ EPCs) have been shown to improve the infection. These novel approaches were evaluated in infection and transfection experiments. Hypoxic conditions or the use of CD36+ EPCs resulted in a significant acceleration of the infection/transfection and a modest increase in the yield of capsid progeny. However, under all tested conditions, genome encapsidation was impaired seriously. Further analysis of the cell culture virus progeny revealed that differently to the wild-type virus, the VP1 unique region (VP1u) was exposed partially and was unable to become further externalized upon heat treatment. The fivefold axes pore, which is used for VP1u externalization and genome encapsidation, might be constricted by the atypical VP1u conformation explaining the packaging failure. Although CD36+ EPCs and hypoxia facilitate B19V infection, large quantities of infectious progeny cannot be generated due to a failure in genome encapsidation, which arises as a major limiting factor for the in vitro propagation of B19V.
Resumo:
Bluetongue virus (BTV) is an economically important member of the genus Orbivirus and closely related to African horse sickness virus (AHSV) and Epizootic hemorrhagic disease virus (EHDV). Currently, 26 different serotypes of BTV are known. The virus is transmitted by blood-feeding Culicoides midges and causes disease (bluetongue [BT]) in ruminants. In 2006/2007, BTV serotype 8 (BTV-8) caused widespread outbreaks of BT amongst livestock in Europe, which were eventually controlled employing a conventionally inactivated BTV vaccine. However, this vaccine did not allow the discrimination of infected from vaccinated animals (DIVA) by the commonly used VP7 cELISA. RNA replicon vectors based on propagation-incompetent recombinant vesicular stomatitis virus (VSV) represent a novel vaccine platform that combines the efficacy of live attenuated vaccines with the safety of inactivated vaccines. Our goal was to generate an RNA replicon vaccine for BTV-8, which is safe, efficacious, adaptable to emerging orbivirus infections , and compliant with the DIVA principle. The VP2, VP5, VP3 and VP7 genes encoding the BTV-8 capsid proteins, as well as the non-structural proteins NS1 and NS3 were inserted into a VSV vector genome lacking the essential VSV glycoprotein (G) gene. Infectious virus replicon particles (VRP) were produced on a transgenic helper cell line providing the VSV G protein in trans. Expression of antigens in vitro was analysed by immunofluorescence using monoclonal and polyclonal antibodies. In a pilot study, sheep were immunized with two different VRP-based vaccine candidates, one comprising the BTV-8 antigens VP2, VP5, VP3, VP7, NS1, and NS3, the other one containing antigens VP3, VP7, NS1, and NS3. Control animals received VRPs containing an irrelevant antigen. Virus neutralizing antibodies and protection after BTV-8 challenge were evaluated and compared to animals immunized with the conventionally inactivated vaccine. Full protection was induced only when the two antigens VP2 and VP5 were included in the vaccine. To further evaluate if VP2 alone, a combination of VP2 and VP5 or VP5 alone were necessary for complete protection, we performed a second animal trial. Interestingly, VP2 as well as the combination of VP2 and VP5 but not VP5 alone conferred full protection in terms of neutralizing antibodies, and protection from clinical signs and viremia after BTV-8 challenge. These results show that the VSV replicon system represents a safe, efficacious and DIVA-compliant vaccine against BTV as well as a possible platform for protection against other Orbiviruses, such as AHSV and EHDV.
Resumo:
In addition to classically defined immune mechanisms, cell-intrinsic processes can restrict virus infection and have shaped virus evolution. The details of this virus-host interaction are still emerging. Following a genome-wide siRNA screen for host factors affecting replication of Semliki Forest virus (SFV), a positive-strand RNA (+RNA) virus, we found that depletion of nonsense-mediated mRNA decay (NMD) pathway components Upf1, Smg5, and Smg7 led to increased levels of viral proteins and RNA and higher titers of released virus. The inhibitory effect of NMD was stronger when virus replication efficiency was impaired by mutations or deletions in the replicase proteins. Consequently, depletion of NMD components resulted in a more than 20-fold increase in production of these attenuated viruses. These findings indicate that a cellular mRNA quality control mechanism serves as an intrinsic barrier to the translation of early viral proteins and the amplification of +RNA viruses in animal cells.
Resumo:
Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.
Resumo:
We report the complete genome sequence of bovine pestivirus strain PG-2. The sequence data from this virus showed that PG-2 is closely related to the giraffe pestivirus strain H138. PG-2 and H138 belong to one pestivirus species that should be considered an approved member of the genus Pestivirus.
Resumo:
Many endoparasitic wasps inject, along with the egg, polydnavirus into their insect hosts, the virus being a prerequisite for successful parasitoid development. The genome of polydnaviruses consists of multiple circular dsDNA molecules of variable size. We show for a 12 kbp segment of the braconid Chelonus inanitus (CiV12) that it is integrated into the wasp genome. This is the first direct demonstration of integration for a bracovirus. PCR data indicated that the integrated form of CiV12 was present in all male and female stages investigated while the excised circular virus DNA only appeared in females after a specific stage in pupal-adult development. The data also indicated that after excision of virus DNA the genomic DNA was rejoined. This has not yet been reported for any polydnavirus. Sequence analyses in the junction regions revealed the presence of an imperfect consensus sequence of 15 nucleotides in CiV12, in each terminus of the integrated virus DNA and in the rejoined genomic DNA. Within these repeats two sequence types (ATA, TAC) were observed in the various virus clones and in the clones encompassing the rejoined genomic DNA; they corresponded to the sequence type in the right and left junction, respectively. To explain this, we propose a model of virus DNA replication in which the genomic DNA is folded to juxtapose the direct repeat of the left with that of the right junction; recombination at specific sites would then yield the two types of virus and rejoined genomic DNA.
Resumo:
Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established. The rescued VRP were infectious in cell culture but did not yield infectious progeny virus. Single intradermal vaccination of two pigs with 10(7) TCID(50) of VRP A187delE(rns) elicited neutralizing antibodies, anti-E2 antibodies, and cellular immune responses determined by an increase of IFN-gamma producing cells. No anti-E(rns) antibodies were detected in the vaccinees confirming that this vaccine represents a negative marker vaccine allowing differentiation between infected and vaccinated animals. The two pigs were protected against lethal challenge with the highly virulent CSFV strain Eystrup. In contrast, oral immunization resulted in only partial protection, and neither CSFV-specific antibodies nor stimulated T-cells were found before challenge. These data represent a good basis for more extended vaccination/challenge trials including larger numbers of animals as well as more thorough analysis of virus shedding using sentinel animals to monitor horizontal spread of the challenge virus.