971 resultados para ROTATION CURVES
Resumo:
Lorenz estimates Lorenz and concentration curves from individual-level data and, optionally, displays the results in a graph. Relative as well as generalized, absolute, unnormalized, or custom-normalized Lorenz or concentration curves are supported, and tools for computing contrasts between different subpopulations or outcome variables are provided. Variance estimation for complex samples is fully supported.
Resumo:
Lorenz and concentration curves are widely used tools in inequality research. In this paper I present a new Stata command called -lorenz- that estimates Lorenz and concentration curves from individual-level data and, optionally, displays the results in a graph. The -lorenz- command supports relative as well as generalized, absolute, unnormalized, or custom-normalized Lorenz or concentration curves, and provides tools for computing contrasts between different subpopulations or outcome variables. Variance estimation for complex samples is fully supported.
Resumo:
The concept and logic of the "smile curve" in the context of global value chains has been widely used and discussed at the individual firm level, but rarely identified and investigated at the country and industry levels by using real data. This paper proposes an idea, based on an inter-country input-output model, to consistently measure both the strength and length of linkages between producers and consumers along global value chains. This idea allows for better identification and mapping of smile curves for countries and industries according to their positions and degrees of participation in a given conceptual value chain. Using the 1995-2011 World Input-Output Tables, several conceptual value chains are investigated, including exports of electrical and optical equipment from China and Mexico and exports of automobiles from Japan and Germany. The identified smile curves provide a very intuitive and visual image, which can significantly improve our understanding of the roles played by different countries and industries in global value chains. Further, the smile curves help identify the benefits gained by these countries and industries through their participation in global trade.
Resumo:
Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin.