943 resultados para RNA secondary structure
Resumo:
The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.
Resumo:
Microsecond long Molecular Dynamics (MD) trajectories of biomolecular processes are now possible due to advances in computer technology. Soon, trajectories long enough to probe dynamics over many milliseconds will become available. Since these timescales match the physiological timescales over which many small proteins fold, all atom MD simulations of protein folding are now becoming popular. To distill features of such large folding trajectories, we must develop methods that can both compress trajectory data to enable visualization, and that can yield themselves to further analysis, such as the finding of collective coordinates and reduction of the dynamics. Conventionally, clustering has been the most popular MD trajectory analysis technique, followed by principal component analysis (PCA). Simple clustering used in MD trajectory analysis suffers from various serious drawbacks, namely, (i) it is not data driven, (ii) it is unstable to noise and change in cutoff parameters, and (iii) since it does not take into account interrelationships amongst data points, the separation of data into clusters can often be artificial. Usually, partitions generated by clustering techniques are validated visually, but such validation is not possible for MD trajectories of protein folding, as the underlying structural transitions are not well understood. Rigorous cluster validation techniques may be adapted, but it is more crucial to reduce the dimensions in which MD trajectories reside, while still preserving their salient features. PCA has often been used for dimension reduction and while it is computationally inexpensive, being a linear method, it does not achieve good data compression. In this thesis, I propose a different method, a nonmetric multidimensional scaling (nMDS) technique, which achieves superior data compression by virtue of being nonlinear, and also provides a clear insight into the structural processes underlying MD trajectories. I illustrate the capabilities of nMDS by analyzing three complete villin headpiece folding and six norleucine mutant (NLE) folding trajectories simulated by Freddolino and Schulten [1]. Using these trajectories, I make comparisons between nMDS, PCA and clustering to demonstrate the superiority of nMDS. The three villin headpiece trajectories showed great structural heterogeneity. Apart from a few trivial features like early formation of secondary structure, no commonalities between trajectories were found. There were no units of residues or atoms found moving in concert across the trajectories. A flipping transition, corresponding to the flipping of helix 1 relative to the plane formed by helices 2 and 3 was observed towards the end of the folding process in all trajectories, when nearly all native contacts had been formed. However, the transition occurred through a different series of steps in all trajectories, indicating that it may not be a common transition in villin folding. The trajectories showed competition between local structure formation/hydrophobic collapse and global structure formation in all trajectories. Our analysis on the NLE trajectories confirms the notion that a tight hydrophobic core inhibits correct 3-D rearrangement. Only one of the six NLE trajectories folded, and it showed no flipping transition. All the other trajectories get trapped in hydrophobically collapsed states. The NLE residues were found to be buried deeply into the core, compared to the corresponding lysines in the villin headpiece, thereby making the core tighter and harder to undo for 3-D rearrangement. Our results suggest that the NLE may not be a fast folder as experiments suggest. The tightness of the hydrophobic core may be a very important factor in the folding of larger proteins. It is likely that chaperones like GroEL act to undo the tight hydrophobic core of proteins, after most secondary structure elements have been formed, so that global rearrangement is easier. I conclude by presenting facts about chaperone-protein complexes and propose further directions for the study of protein folding.
Resumo:
Phosphorylation is amongst the most crucial and well-studied post-translational modifications. It is involved in multiple cellular processes which makes phosphorylation prediction vital for understanding protein functions. However, wet-lab techniques are labour and time intensive. Thus, computational tools are required for efficiency. This project aims to provide a novel way to predict phosphorylation sites from protein sequences by adding flexibility and Sezerman Grouping amino acid similarity measure to previous methods, as discovering new protein sequences happens at a greater rate than determining protein structures. The predictor – NOPAY - relies on Support Vector Machines (SVMs) for classification. The features include amino acid encoding, amino acid grouping, predicted secondary structure, predicted protein disorder, predicted protein flexibility, solvent accessibility, hydrophobicity and volume. As a result, we have managed to improve phosphorylation prediction accuracy for Homo sapiens by 3% and 6.1% for Mus musculus. Sensitivity at 99% specificity was also increased by 6% for Homo sapiens and for Mus musculus by 5% on independent test sets. In this study, we have managed to increase phosphorylation prediction accuracy for Homo sapiens and Mus musculus. When there is enough data, future versions of the software may also be able to predict other organisms.
Resumo:
Experimental characterization of molecular details is challenging, and although single molecule experiments have gained prominence, oligomer characterization remains largely unexplored. The ability to monitor the time evolution of individual molecules while they self assemble is essential in providing mechanistic insights about biological events. Molecular dynamics (MD) simulations can fill the gap in knowledge between single molecule experiments and ensemble studies like NMR, and are increasingly used to gain a better understanding of microscopic properties. Coarse-grained (CG) models aid in both exploring longer length and time scale molecular phenomena, and narrowing down the key interactions responsible for significant system characteristics. Over the past decade, CG techniques have made a significant impact in understanding physicochemical processes. However, the realm of peptide-lipid interfacial interactions, primarily binding, partitioning and folding of amphipathic peptides, remains largely unexplored compared to peptide folding in solution. The main drawback of existing CG models is the inability to capture environmentally sensitive changes in dipolar interactions, which are indigenous to protein folding, and lipid dynamics. We have used the Drude oscillator approach to incorporate structural polarization and dipolar interactions in CG beads to develop a minimalistic peptide model, WEPPROM (Water Explicit Polarizable PROtein Model), and a lipid model WEPMEM (Water Explicit Polarizable MEmbrane Model). The addition of backbone dipolar interactions in a CG model for peptides enabled us to achieve alpha-beta secondary structure content de novo, without any added bias. As a prelude to studying amphipathic peptide-lipid membrane interactions, the balance between hydrophobicity and backbone dipolar interactions in driving ordered peptide aggregation in water and at a hydrophobic-hydrophilic interface, was explored. We found that backbone dipole interactions play a crucial role in driving ordered peptide aggregation, both in water and at hydrophobic-hydrophilic interfaces; while hydrophobicity is more relevant for aggregation in water. A zwitterionic (POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and an anionic lipid (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) are used as model lipids for WEPMEM. The addition of head group dipolar interactions in lipids significantly improved structural, dynamic and dielectric properties of the model bilayer. Using WEPMEM and WEPPROM, we studied membrane-induced peptide folding of a cationic antimicrobial peptide with anticancer activity, SVS-1. We found that membrane-induced peptide folding is driven by both (a) cooperativity in peptide self interaction and (b) cooperativity in membrane-peptide interactions. The dipolar interactions between the peptide and the lipid head-groups contribute to stabilizing folded conformations. The role of monovalent ion size and peptide concentration in driving lipid domain formation in anionic/zwitterionic lipid mixtures was also investigated. Our study suggest monovalent ion size to be a crucial determinant of interaction with lipid head groups, and hence domain formation in lipid mixtures. This study reinforces the role of dipole interactions in protein folding, lipid membrane properties, membrane induced peptide folding and lipid domain formation. Therefore, the models developed in this thesis can be used to explore a multitude of biomolecular processes, both at longer time-scales and larger system sizes.
Resumo:
The folding and targeting of membrane proteins poses a major challenge to the cell, as they must remain insertion competent while their highly hydrophobic transmembrane (TM) domains are transferred from the ribosome, through the aqueous cytosol and into the lipid bilayer. The biogenesis of a mature membrane protein takes place through the insertion and integration into the lipid bilayer. A number of TM proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. Although studies into the folding and targeting of a number of membrane proteins have been carried out to date, there is little information on one of the largest class of eukaryotic membrane proteins; the G-protein-coupled receptors (GPCRs). This project studies the early folding events of the human ortholog of GPR35. To analyse the structure of the 1st TM domain, intermediates were generated and assessed by the biochemical method of pegylation (PEG-MAL). A structurally-similar microbial opsin (Bacterioopsin) was also used to investigate the differences in the early protein folding within eukaryotic and prokaryotic translation systems. Results showed that neither the 1st TM domain of GPR35 nor Bacterioopsin were capable of compacting in the ribosome tunnel before their N-terminus reached the ribosome exit point. The results for this assay remained consistent whether the proteins were translated in a eukaryotic or prokaryotic translation system. To examine the communication mechanism between the ribosome, the nascent chain and the protein targeting pathway, crosslinking experiments were carried out using the homobifunctional lysine cross-linker BS3. Specifically, the data generated here show that the nascent chain of GPR35 reaches the ribosomal protein uL23 in an extended conformation and interacts with the SRP protein as it exits the ribosome tunnel. This confirms the role of SRP in the co-translational targeting of GPR35. Using these methods insights into the early folding of GPCRs has been obtained. Further experiments using site-directed mutagenesis to reduce hydrophobicity in the 1st TM domain of GPR35, highlighted the mechanisms by which GPCRs are targeted to the endoplasmic reticulum. Confirming that hydrophobicity within the signal anchor sequence is essential of SRP-dependent targeting. Following the successful interaction of the nascent GPR35 and SRP, GPR35 is successfully targeted to ER membranes, shown here as dog pancreas microsomes (DPMs). Glycosylation of the GPR35 N-terminus was used to determine nascent chain structure as it is inserted into the ER membrane. These glycosylation experiments confirm that TM1 has obtained its compacted state whilst residing in the translocon. Finally, a site-specific cross-linking approach using the homobifunctional cysteine cross-linker, BMH, was used to study the lateral integration of GPR35 into the ER. Cross-linking of GPR35 TM1 and TM2 could be detected adjacent to a protein of ~45kDa, believed to be Sec61α. The loss of this adduct, as the nascent chain extends, showed the lateral movement of GPR35 TM1 from the translocon was dependent on the subsequent synthesis of TM2.
Resumo:
UV-melting experiments were performed on 9-mer duplexes containing a pair of synthetic nucleobases P·Z, two members of Expanded Genetic Information System (AEGIS), or P, Z containing mismatches. Enthalpy, entropy and free energy change were derived from simulation using two-state transition model. Nearest neighbor thermodynamic parameters of trimers or tetramers containing P·Z pair or P, Z containing mismatches were derived based on known nearest neighbor parameters. Proposed structures based on thermodynamic parameters are discussed. An application using P·Z pair as reverse selection tool of desired nucleic acid secondary structure is described.
Resumo:
Flavonoids, coumarins and other polyphenolic compounds are powerful antioxiants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. Despite being widely used as powerful therapeutic agents for blood coagulation disorders, more specifically to control some serine protease enzymes, the mechanism of anti-inflammatory activity of coumarins is unknown, unlike that of flavonoids. Although their controlling effect on serine proteases is well acknowledged, their action on secretory phospholipase A2 (sPLA2) remains obscure. The present study describes the interaction between umbelliferone (7-HOC) and the sPLA2 from Crotalus durissus collilineatus venom. In vitro inhibition of sPLA2 enzymatic activity by 7-HOC was estimated using 4N3OBA as substrate, resulting in an irreversible decrease in such activity proportional to 7-HOC concentration. The biophysical interaction between 7-HOC and sPLA2 was examined by fluorescent spectral analysis and circular dichroism studies. Results from both techniques clearly showed that 7-HOC strongly modified the secondary structure of this enzyme and CD spectra revealed that it strongly decreased sPLA2 alphahelical conformation. In addition, two-dimensional electrophoresis indicated an evident difference between HPLC-purified native and 7-HOC-treated sPLA2s, which were used in pharmacological experiments to compare their biological activities. In vivo anti-inflammatory activity was assessed by the sPLA2-induced mouse paw edema model, in which 7-HOC presented an effect similar to those of dexamethasone and cyproheptacline against the pro-inflammatory effect induced by native sPLA2 on the mouse paw edema, mast cell degranulation and skin edema. on the other hand, 7-HOC exhibited a more potent inhibitory effect on sPUL2 than that of p-bromophenacyl bromide (p-BPB). Our data suggest that 7-HOC interacts with sPLA2 and causes some structural modifications that lead to a sharp decrease or inhibition of the edematogenic and myotoxic activities of this enzyme, indicating its potential use to suppress inflammation induced by sPLA2 from the snake venom. (C) 2008 Published by Elsevier Ltd.
Resumo:
Dissertação de mestrado, Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
As polyphenolic compounds isolated from plants extracts, flavonoids have been applied to various pharmaceutical uses in recent decades due to their anti-inflammatory, cancer preventive, and cardiovascular protective activities. In this study, we evaluated the effects of the flavonoid quercetin on Crotalus durissus terrificus secretory phospholipase A2 (sPLA2), an important protein involved in the release of arachidonic acid from phospholipid membranes. The protein was chemically modified by treatment with quercetin, which resulted in modifications in the secondary structure as evidenced through circular dichroism. In addition, quercetin was able to inhibit the enzymatic activity and some pharmacological activities of sPLA2, including its antibacterial activity, its ability to induce platelet aggregation, and its myotoxicity by approximately 40%, but was not able to reduce the inflammatory and neurotoxic activities of sPLA2. These results suggest the existence of two pharmacological sites in the protein, one that is correlated with the enzymatic site and another that is distinct from it. We also performed molecular docking to better understand the possible interactions between quercetin and sPLA2. Our docking data showed the existence of hydrogen-bonded, polar interactions and hydrophobic interactions, suggesting that other flavonoids with similar structures could bind to sPLA2. Further research is warranted to investigate the potential use of flavonoids as sPLA2 inhibitors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The assembly of outer membranes of the cell wall of Gram-negative bacteria and of various organelles of eukaryotic cells requires the evolutionarily conserved β-barrel-assembly machinery (BAM) complex. This thesis describes the biochemical and biophysical properties of the periplasmic domain of the β-barrel assembly machinery protein A (PD-BamA) of the E. coli BAM complex, its effect on insertion and folding of the Outer membrane protein A (OmpA) into lipid bilayers and the identification of regions of PD-BamA that may be involved in protein-protein interactions. The secondary structure of PD-BamA in mixed lipid bilayers, analyzed by Circular dichroism (CD) spectroscopy, contained less β-sheet at an increased content of phosphatidylglycerol (PG) in the lipid membrane. This result showed membrane binding, albeit only in the presence of negatively charged lipids. Fluorescence spectroscopy demonstrated that PD-BamA only binds to lipid bilayers containing the negatively charged DOPG, confirming the results of CD spectroscopy. PD-BamA did not bind to zwitterionic but overall neutral lipid bilayers. PD-BamA bound to OmpA at a stoichiometry of 1:1. PD-BamA strongly facilitated insertion and folding of OmpA into lipid membranes. Kinetics of PD-BamA mediated folding of OmpA was well described by two parallel folding processes, a fast folding process and a slow folding process, differing by 2-3 orders of magnitude in their rate constants. The folding yields of OmpA depended on the concentration of lipid membranes and also on the lipid head groups. The presence of PD-BamA resulted in increased folding yields of OmpA in negatively charged DOPG, but PD-BamA did not affect the folding kinetics of OmpA into bilayers of zwitterionic but overall neutral lipids. The efficiency of folding and insertion of OmpA into lipid bilayers strongly depended on the ratio PD-BamA/OmpA and was optimal at equimolar concentrations of PD-BamA and OmpA. To examine complexes of unfolded OmpA with PD-BamA in more detail, site-directed spectroscopy was used to explore contact regions in both, PD-BamA and OmpA. Similarly, contact regions were also investigated for another protein complex formed by PD-BamA and the lipoprotein BamD. The obtained data suggest, that the site of interaction on PD-BamA for OmpA might be oriented towards the exterior environment away from the preceding POTRA domains, but that PD-BamA is oriented with its short α-helix α1 of POTRA domain 5 towards the C-terminal end of BamD.
Resumo:
This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.
Resumo:
SPECT-1 y -2 y SIAP-1 y -2 son proteínas pertenecientes al esporozoíto de Plasmodium falciparum causante de la malaria más agresiva en los humanos. Estas proteínas están involucradas en el paso del parásito a través de las células del hospedero humano y en la invasión del hepatocito, haciéndolas blancos atractivos para ser estudiadas. Péptidos conservados de alta capacidad de unión (cHABPs) a células HeLa y HepG2 derivados de estas moléculas son no inmunogénicos porque son incapaces de generar una respuesta inmunitaria, pero son claves para el parásito porque cumplen una función importante durante la infección del hospedero humano. En este trabajo se encontró que algunos cHABPs pertenecientes a las proteínas SPECT-1 y -2, están posiblemente involucrados con la unión y formación de poros sobre la membrana de las células hospederas, ayudando al esporozoíto a abrirse paso través de las células del hospedero. Por otro lado, con el fin de cambiar el comportamiento inmunológico de cHABPs derivados de SPECT-1 y -2 y SIAP-1 y -2, se obtuvieron nuevos péptidos mediante el reemplazo de aminoácidos críticos por otros residuos cuya masa molecular sea similar, pero diferente en su polaridad. En este trabajo se reporta que dichas modificaciones promovieron cambios en la estructura secundaria (determinada por DC o 1H-RMN) de los péptidos modificados (mHABPs) cuando se comparó con la estructura de los cHABPs nativos; adicionalmente, estos mHABPs invirtieron su comportamiento inmunológico convirtiéndose en péptidos inmunogénicos inductores de anticuerpos. Lo que permite establecer la existencia de una relación entre la estructura que adoptan estos mHABPs con su actividad inmunológica. Además, algunos de los mHABPs estudiados aquí, pueden ser candidatos a ser incluidos en la vacuna contra la malaria químicamente sintetizada multi-epitope y multi-estadio que se está desarrollando en la Fundación Instituto de Inmunología de Colombia (FIDIC).
Resumo:
Abstract Presently, Hop stunt viroid(HSVd) and Citrus exocortis viroid (CEVd) are the only viroids reported to infect grapevines (Vitis spp.) in Brazil, among the seven viroid species already reported infecting this host in other countries. All grapevine viroid diseases are graft-transmissible and can induce losses especiallywhenassociatedwithviruses.Theaimofthisworkwas to confirm infection by Grapevine yellow speckle viroid 1(GYSVd-1) in grapevine samples exhibiting yellow speckle symptoms in the leaves and in asymptomatic samples sequenced by next generation sequencing (NGS). The occurrence of this viroid in Brazil was further investigated in a second study. Total RNAs and dsRNAs were extracted from five symptomatic plants and 16 asymptomatic samples, respectively. Specific primers were used for RT-PCR and amplified DNA fragments were cloned and sequenced by the Sanger method. Eleven complete nucleotide sequences of GYSVd-1 isolates (366 ?367 nt) were obtained from NGS and from RT-PCR amplicons. Comparisons showed high identities (95.9 ?100 %) among ten isolates and an identity of 87.2 ?90.4 % with a divergent isolate (RM-BR). Phylogenetic analyses placed GYSVd-1 isolates in four clusters (types 1, 2, 3 and 4). All GYSVd-1 infections were confirmed by conventional RT-PCR and RT-qPCR using specific oligonucleo-tides and a labeled probe. This is the first report and molecular characterization of GYSVd-1 infecting grapevines in Brazil, and our survey indicates that this viroid could be widespread in the major grape producing regions of Brazil. Keywords GYSVd-1 . Incidence . Next generation sequencing. Secondary structure. Vine.
Resumo:
Cancer is a disease that has plagued scientists for decades, and how to treat cancer and its complications are inevitable topics in current scientific research. Cancer pain is a major factor that reduces the quality of life of patients. Therefore, the development of analgesic agents with minimal adverse side effects, especially with low addiction, has attracted more and more attention. Among them, opioid analgesics are widely used to alleviate cancer pain and improve the quality of life of patients with advanced cancer, such as in the palliative therapy. Although peptide drugs are efficient, selective and safe, they have several unignorable disadvantages such as poor biological stability, rapid excretion, difficulty in penetrate blood brain barrier. In order to solve these problems, peptidomimetics were developed by introducing unnatural/modified amino acids, decorated peptide backbone, conformational restrictions and secondary structure mimics in peptide sequence. Compared with peptides, peptidomimetics have improved biological stability, increased bioavailability, high affinity and selectivity for receptor binding, and decreased adverse side effects. As the second part of this thesis, I explored the opportunity to design peptide-functionalized responsive biomaterials for the detection of cancer cell and the selective delivery of cytotoxic drugs. The conjugation of peptides with biomaterials enhanced the stability of the loaded drugs, improved targeted delivery, decreased side effects, and increased bioavailability. The precise and controllable drug delivery platform has profound application prospects in cancer treatment. Grafting specific peptides sequence on the surface of biomaterials can satisfy different drug delivery demands according to the characteristics of both peptides and biomaterials. For example, the introduction of tumor-targeting peptides can guide biomaterials into tumor lesions, and blood-brain barrier (BBB) shuttle peptides can lead biomaterials to penetrate the BBB, etc.
Resumo:
In Metazoa, the germline represents the cell lineage devoted to transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in the development of a new organism and in the evolution of the species. Germline establishment is tightly tied to animal multicellularity itself, in which the complex differentiation of cell lineages is favoured by the confinement of totipotency in specific cell populations. In the present thesis, I addressed the subject of germline characterization in animals through different approaches, in an attempt to cover different sides and scales. First, I investigated the extent and nature of shared differentially transcribed molecular factors in 10 different species germline-related lineages. I observed that newly evolved genes are less likely to be involved in germline-related mechanisms and that the mostly shared transcriptional signal across the species considered was the upregulation of genes associated to proper DNA replication, instead of the expected transcriptional and post-transcriptional regulation, that apparently have a higher level of lineage-specificity. I then focused on the evolutionary history of Tudor domain containing proteins, a gene family that underwent germline-associated expansions in animals. Using data from 24 holozoan phyla, I could confirm the previously proposed evolution of the Tudor domain secondary structure. Also, I associated lineage-specific family reductions and expansions to peculiar genomic dynamics and to the evolution of germline-associated piRNA pathway of retrotransposon silencing. Lastly, I characterized and investigated the expression of the Tudor protein TDRD7 in the clam Ruditapes philippinarum. Through immunolocalization, I could compare its expression profiles in gametogenic specimens to the previously characterized germline marker vasa. Combining results with literature, I proposed that, in this species, TDRD7 is involved in the assembly of germ granules, i.e. cytoplasmic structures associated to germline differentiation in virtually all animals, but whose assemblers can be taxon specific.