993 resultados para RING-DISK ELECTRODE
Resumo:
This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.
Resumo:
In this part of the present work, a simplified model—the thin transition layer theory is proposed. The comparison of this model with the G-L sheet model is made.
Resumo:
In 1980 the Beijing Observatory had successively observed sevesal rare completely closed ring prominences whose ring plane was approximately parallel to the solar surface with a characteristic life about 1—2 days. In this paper we discuss the static equilibrium of this kind of horizontal ring plasma under the simultaneous actions of magnetic force, gravity and pressure gradients. Assuming ring plasma with axisymmetry and rectangular plasma cross-section and adopting closed magnetic field boundary condition from the basic equations we obtain the exact zero order general solutions for magnetic field (force-free field) and density (pressure). We further obtain an eigen-solution for the zero order magnetic field and density as well as the first order magnetic field, thus giving a kind of the possible distribution of magnetic field and density for the horizontal closed ring prominence. The closed magnetic structure of ring prominence as presented in this paper, has no link with the force lines of the outside corona magnetic field. This is helpful to explain the great temperature difference between prominenee and corona.
Resumo:
We demonstrate the first full-duplex wireless-over-fibre transmission between a central station and a CWDM ring architecture with remote 40 GHz LO delivery using a bi-directional semiconductor optical amplifier. © 2005 Optical Society of America.
Resumo:
This thesis discusses two major topics: the ring-opening metathesis polymerization (ROMP) of bulky monomers and the radical-mediated hydrophosphonation of olefins. The research into the ROMP of bulky monomers is further divided into three chapters: wedge-shaped monomers, the alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene, and the kinetic resolution polymerization of 1-methyloxanorbornene derivatives. The wedge-shaped monomers can be polymerized into diblock copolymers that possess photonic crystal properties. The alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene is performed with > 90% alternation via two different routes: typical alternating copolymerization and a sequence editing approach. The kinetic resolution polymerization of these same 1-methyloxanorbornene monomers achieves only modest selectivity (S=4), but there is evidence that the growing polymer chain forms a helix that influences the selectivity of the resolution. The last topic is the radical-mediated hydrophosphonation of olefins. This synthetic method provides access to Wittig reagents that are capable of highly cis-selective olefinations of aldehydes.
Resumo:
Optical frequency combs (OFCs) provide direct phase-coherent link between optical and RF frequencies, and enable precision measurement of optical frequencies. In recent years, a new class of frequency combs (microcombs) have emerged based on parametric frequency conversions in dielectric microresonators. Micocombs have large line spacing from 10's to 100's GHz, allowing easy access to individual comb lines for arbitrary waveform synthesis. They also provide broadband parametric gain bandwidth, not limited by specific atomic or molecular transitions in conventional OFCs. The emerging applications of microcombs include low noise microwave generation, astronomical spectrograph calibration, direct comb spectroscopy, and high capacity telecommunications.
In this thesis, research is presented starting with the introduction of a new type of chemically etched, planar silica-on-silicon disk resonator. A record Q factor of 875 million is achieved for on-chip devices. A simple and accurate approach to characterize the FSR and dispersion of microcavities is demonstrated. Microresonator-based frequency combs (microcombs) are demonstrated with microwave repetition rate less than 80 GHz on a chip for the first time. Overall low threshold power (as low as 1 mW) of microcombs across a wide range of resonator FSRs from 2.6 to 220 GHz in surface-loss-limited disk resonators is demonstrated. The rich and complex dynamics of microcomb RF noise are studied. High-coherence, RF phase-locking of microcombs is demonstrated where injection locking of the subcomb offset frequencies are observed by pump-detuning-alignment. Moreover, temporal mode locking, featuring subpicosecond pulses from a parametric 22 GHz microcomb, is observed. We further demonstrated a shot-noise-limited white phase noise of microcomb for the first time. Finally, stabilization of the microcomb repetition rate is realized by phase lock loop control.
For another major nonlinear optical application of disk resonators, highly coherent, simulated Brillouin lasers (SBL) on silicon are also demonstrated, with record low Schawlow-Townes noise less than 0.1 Hz^2/Hz for any chip-based lasers and low technical noise comparable to commercial narrow-linewidth fiber lasers. The SBL devices are efficient, featuring more than 90% quantum efficiency and threshold as low as 60 microwatts. Moreover, novel properties of the SBL are studied, including cascaded operation, threshold tuning, and mode-pulling phenomena. Furthermore, high performance microwave generation using on-chip cascaded Brillouin oscillation is demonstrated. It is also robust enough to enable incorporation as the optical voltage-controlled-oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. Finally, applications of microresonators as frequency reference cavities and low-phase-noise optomechanical oscillators are presented.
Resumo:
Past workers in this group as well as in others have made considerable progress in the understanding and development of the ring-opening metathesis polymerization (ROMP) technique. Through these efforts, ROMP chemistry has become something of an organometallic success story. Extensive work was devoted to trying to identify the catalytically active species in classical reaction mixtures of early metal halides and alkyl aluminum compounds. Through this work, a mechanism involving the interconversion of metal carbenes and metallacyclobutanes was proposed. This preliminary work finally led to the isolation and characterization of stable metal carbene and metallacyclobutane complexes. As anticipated, these well-characterized complexes were shown to be active catalysts. In a select number of cases, these catalysts have been shown to catalyze the living polymerization of strained rings such as norbornene. The synthetic control offered by these living systems places them in a unique category of metal catalyzed reactions. To take full advantage of these new catalysts, two approaches should be explored. The first takes advantage of the unusual fact that all of the unsaturation present in the monomer is conserved in the polymer product. This makes ROMP techniques ideal for the synthesis of highly unsaturated, and fully conjugated polymers, which find uses in a variety of applications. This area is currently under intense investigation. The second aspect, which should lend itself to fruitful investigations, is expanding the utility of these catalysts through the living polymerization of monomers containing interesting functional groups. Polymer properties can be dramatically altered by the incorporation of functional groups. It is this latter aspect which will be addressed in this work.
After a general introduction to both the ring-opening metathesis reaction (Chapter 1) and the polymerization of fuctionalized monomers by transition metal catalysts (Chapter 2), the limits of the existing living ROMP catalysts with functionalized monomers are examined in Chapter 3. Because of the stringent limitations of these early metal catalysts, efforts were focused on catalysts based on ruthenium complexes. Although not living, and displaying unusually long induction periods, these catalysts show high promise for future investigations directed at the development of catalysts for the living polymerization of functionalized monomers. In an attempt to develop useful catalysts based on these ruthenium complexes, efforts to increase their initiation rates are presented in Chapter 4. This work eventually led to the discovery that these catalysts are highly active in aqueous solution, providing the opportunity to develop aqueous emulsion ROMP systems. Recycling the aqueous catalysts led to the discovery that the ruthenium complexes become more activated with use. Investigations of these recycled solutions uncovered new ruthenium-olefin complexes, which are implicated in the activation process. Although our original goal of developing living ROMP catalysts for the polymerization of fuctionalized monomers is yet to be realized, it is hoped that this work provides a foundation from which future investigations can be launched.
In the last chapter, the ionophoric properties of the poly(7-oxanobornene) materials is briefly discussed. Their limited use as acyclic host polymers led to investigations into the fabrication of ion-permeable membranes fashioned from these materials.
Resumo:
We demonstrate an ultrafast transient, ring-shaped population grating induced by an ultrashort hollow Gaussian laser bullet by solving the three-dimensional full-wave Maxwell-Bloch equations. Through adjusting the beam waist and the area of the pulse, we can control the number of lines and the period of the grating. Based on this coherent control scheme, a door to produce gratings with complex transverse structure is opened.
Resumo:
Part I. Novel composite polyelectrolyte materials were developed that exhibit desirable charge propagation and ion-retention properties. The morphology of electrode coatings cast from these materials was shown to be more important for its electrochemical behavior than its chemical composition.
Part II. The Wilhelmy plate technique for measuring dynamic surface tension was extended to electrified liquid-liquid interphases. The dynamical response of the aqueous NaF-mercury electrified interphase was examined by concomitant measurement of surface tension, current, and applied electrostatic potential. Observations of the surface tension response to linear sweep voltammetry and to step function perturbations in the applied electrostatic potential (e.g., chronotensiometry) provided strong evidence that relaxation processes proceed for time-periods that are at least an order of magnitude longer than the time periods necessary to establish diffusion equilibrium. The dynamical response of the surface tension is analyzed within the context of non-equilibrium thermodynamics and a kinetic model that requires three simultaneous first order processes.
Resumo:
The kinetics of the reduction of O2 by Ru(NH3)6+2 as catalyzed by cobalt(II) tetrakis(4-N-methylpyridyl)porphyrin are described both in homogeneous solution and when the reactants are confined to Nafion coatings on graphite electrodes. The catalytic mechanism is determined and the factors that can control the total reduction currents at Nafion-coated electrodes are specified. A kinetic zone diagram for analyzing the behavior of catalyst-mediator-substrate systems at polymer coated electrodes is presented and utilized in identifying the current-limiting processes. Good agreement is demonstrated between calculated and measured reduction currents at rotating disk electrodes. The experimental conditions that will yield the optimum performance of coated electrodes are discussed, and a relationship is derived for the optimal coating thickness.
The relation between the reduction potentials of adsorbed and unadsorbed cobalt(III) tetrakis(4-N-methylpyridyl)porphyrin and those where it catalyzes the electroreduction of dioxygen is described. There is an unusually large change in the formal potential of the Co(III) couple upon the adsorption of the porphyrin on the graphite electrode surface. The mechanism in which the (inevitably) adsorbed porphyrin catalyzes the reduction of O2 is in accord with a general mechanistic scheme proposed for most monomeric cobalt porphyrins.
Four new dimeric metalloporphyrins (prepared in the laboratory of Professor C. K. Chang) have the two porphyrin rings linked by an anthracene bridge attached to meso positions. The electrocatalytic behavior of the diporphyrins towards the reduction of O2 at graphite electrodes has been examined for the following combination of metal centers: Co-Cu, Co-Fe, Fe-Fe, Fe-H2. The Co-Cu diporphyrin catalyzes the reduction of O2 to H2O2 but no further. The other three catalysts all exhibit mixed reduction pathways leading to both H2O2 and H2O. However, the pathways that lead to H2O do not involve H2O2 as an intermediate. A possible mechanistic scheme is offered to account for the observed behavior.
Resumo:
A planar lightwave circuit (PLC) add-drop filter is proposed and analyzed, which consists of a symmetric Mach-Zehnder interferometer (MZI) combined with double microring resonators. A critical coupling condition is derived for a better box-like drop spectrum. Comparisons of its characteristics with other schemes, such as a MZI with a single ring resonator, arepresented, and some of the issues about device design and fabrication are also discussed.