961 resultados para RESPONSE GENES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the host-pathogen interactions of the human opportunistic fungus Candida albicans using Drosophila melanogaster. We established that a Drosophila strain devoid of functional Toll receptor is highly susceptible to the human pathogen C. albicans. Using this sensitive strain, we have been able to show that a set of specific C. albicans mutants of different virulence in mammalian infection models are also impaired in virulence in Drosophila and remarkably display the same rank order of virulence. This immunodeficient insect model also revealed virulence properties undetected in an immunocompetent murine model of infection. The genetic systems available in both host and pathogen will enable the identification of host-specific components and C. albicans genes involved in the host-fungal interplay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved. KEYWORDS: allogeneic bone; augmentation; autoclaving; autologous bone; bone bank; bone grafts; bone regeneration; bone supernatant; bone-conditioned medium; freezing; pasteurization

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different cytokines are secreted in response to specific microbial molecules referred to as pathogen associated molecular patterns (PAMPs). Interleukin 6 (IL6) and interleukin 10 (IL10), both secreted by macrophages and lymphocytes, play a central role in the immunological response. In this work we obtained the genomic structure and complete DNA sequence of the porcine IL6 and IL10 genes and identified polymorphisms in the genomic sequences of these genes on a panel of ten different pig breeds. Comparative intra- and interbreed sequence analysis revealed a total of eight polymorphisms in the porcine IL6 gene and 21 in the porcine IL10 gene, which include single nucleotide polymorphisms (SNPs) and insertion deletion polymorphisms (indels). Additionally, the chromosomal localization of the IL10 gene was determined by FISH and RH mapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Whole saliva comprises components of the salivary pellicle that spontaneously forms on surfaces of implants and teeth. However, there are no studies that functionally link the salivary pellicle with a possible change in gene expression. MATERIALS AND METHODS This study examined the genetic response of oral fibroblasts exposed to the salivary pellicle and whole saliva. Oral fibroblasts were seeded onto a salivary pellicle and the respective untreated surface. Oral fibroblasts were also exposed to freshly harvested sterile-filtered whole saliva. A genome-wide microarray of oral fibroblasts was performed, followed by gene ontology screening with DAVID functional annotation clustering, KEGG pathway analysis, and the STRING functional protein association network. RESULTS Exposure of oral fibroblasts to saliva caused 61 genes to be differentially expressed (P < .05). Gene ontology screening assigned the respective genes into 262 biologic processes, 3 cellular components, 13 molecular functions, and 7 pathways. Most remarkable was the enrichment in the inflammatory response. None of the genes regulated by whole saliva was significantly changed when cells were placed onto a salivary pellicle. CONCLUSION The salivary pellicle per se does not provoke a significant inflammatory response of oral fibroblasts in vitro, whereas sterile-filtered whole saliva does produce a strong inflammatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhinoviruses (RVs) are associated with exacerbations of cystic fibrosis (CF), asthma and COPD. There is growing evidence suggesting the involvement of the interferon (IFN) pathway in RV-associated morbidity in asthma and COPD. The mechanisms of RV-triggered exacerbations in CF are poorly understood. In a pilot study, we assessed the antiviral response of CF and healthy bronchial epithelial cells (BECs) to RV infection, we measured the levels of IFNs, pattern recognition receptors (PRRs) and IFN-stimulated genes (ISGs) upon infection with major and minor group RVs and poly(IC) stimulation. Major group RV infection of CF BECs resulted in a trend towards a diminished IFN response at the level of IFNs, PRRs and ISGs in comparison to healthy BECs. Contrary to major group RV, the IFN pathway induction upon minor group RV infection was significantly increased at the level of IFNs and PRRs in CF BECs compared to healthy BECs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moraxella catarrhalis is a common pathogen of the human respiratory tract. Multidrug efflux pumps play a major role in antibiotic resistance and virulence in many Gram-negative organisms. In the present study, the role of the AcrAB-OprM efflux pump in antibiotic resistance was investigated by constructing mutants that lack the acrA, acrB, and oprM genes in M. catarrhalis strain O35E. We observed a moderate (1.5-fold) decrease in the MICs of amoxicillin and cefotaxime and a marked (4.7-fold) decrease in the MICs of clarithromycin for acrA, acrB, and oprM mutants in comparison with the wild-type O35E strain. Exposure of the M. catarrhalis strains O35E and 300 to amoxicillin triggered an increased transcription of all AcrAB-OprM pump genes, and exposure of strains O35E, 300, and 415 to clarithromycin enhanced the expression of acrA and oprM mRNA. Inactivation of the AcrAB-OprM efflux pump genes demonstrated a decreased ability to invade epithelial cells compared to the parental strain, suggesting that acrA, acrB, and oprM are required for efficient invasion of human pharyngeal epithelial cells. Cold shock increases the expression of AcrAB-OprM efflux pump genes in all three M. catarrhalis strains tested. Increased expression of AcrAB-OprM pump genes after cold shock leads to a lower accumulation of Hoechst 33342 (H33342), a substrate of AcrAB-OprM efflux pumps, indicating that cold shock results in increased efflux activity. In conclusion, the AcrAB-OprM efflux pump appears to play a role in the antibiotic resistance and virulence of M. catarrhalis and is involved in the cold shock response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spirochete Borrelia burgdorferi (Bb) is the causative agent of Lyme disease. During infection, a strong immune response is elicited towards Bb by its host; however, the organism is able to persist and to disseminate to many different tissues. The vls locus is located on the linear plasmid lp28-1, a plasmid shown to be important for virulence in the mouse model. During infection, vlsE undergoes antigenic variation through a series of gene conversions, which results in the insertion of sequences from the silent, unexpressed cassettes into the vlsE cassette. We hypothesize that this antigenic variation is important in the spirochete's ability to persist within mammals by allowing it to evade the immune system. To define the role of vls in immune evasion, the immune response against VlsE was determined by using a recombinant form of VlsE (VlsE1-His) as an antigen to screen patient sera. Lyme patients produce antibodies that recognize VlsE, and these antibodies are present throughout the course of disease. Immunization with the VlsE1-His protein provided protection against infection with Bb expressing the same variant of VlsE (VlsE1), but was only partially protective when mice were infected with organisms expressing VlsE variants; however, subsequent VlsE immunization studies yielded inconsistent protection. Successful immunizations produced different antibody reactivities to VlsE epitopes than non-protective immunizations, but the reason for this variable response is unclear. In the process of developing genetic approaches to transform infectious Bb, it was determined that the transformation barrier posed by plasmids lp25 and lp56 could be circumvented by replacing the required lp25 gene pncA. To characterize the role of vlsE in infectivity, Bb lacking lp28-1 were complemented with a shuttle plasmid containing the lp25 encoded virulence determinant pncA and vlsE. Complemented spirochetes express VlsE, but the gene does not undergo antigenic variation and infectivity in the mouse model was not restored, indicating that either antigenic variation of vlsE is necessary for survival in the mouse model or that other genes on lp28-1 are important for virulence. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligodendrogliomas are primary neoplasms of the central nervous system (CNS). One of the most common and characteristic chromosomal abnormalities observed in oligodendroglioma is allelic loss of 1p (Reifenberger et al., 1994; Bello et al., 1995). Since 1p loss has been reported for both well-differentiated and anaplastic oligodendroglioma, it is believed to occur early in tumor development (Bello et al., 1995). This allelic loss also has clinical significance, for oligodendroglioma patients with 1p loss generally respond significantly better to combination chemotherapy and have longer average survival than do oligodendroglioma patients without 1p loss (Cairncross et al., 1998). To date, no genes on 1p have been implicated as essential to the development or treatment response of oligodendroglioma. In order to localize and/or identify a gene involved in oligodendroglioma development, I tested 170 oligodendrogliomas for deletions of 1p and tested 26 tumors for differential expression of genes in the region of 1p36. Evidence obtained from these methods implicated two genes, SHREW1 and the gene encoding DNA fragmentation factor beta (DFFB). The function for the SHREW1 locus is currently not well known, but preliminary data suggests that it a novel member of adherens junctions. The DFFB gene is an enhancer for apoptosis. Thus, both SHREW1 and DFFB may be candidates for an oligodendroglioma tumor suppressor. Mutational analysis of both genes did not uncover any mutations. Future studies will evaluate other mechanisms that may be responsible for inactivation of these genes in oligodendrogliomas. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies of p53 function have focused on genes transactivated by p53. It is less widely appreciated that p53 can repress target genes to affect a particular cellular response. There is evidence that repression is important for p53-induced apoptosis and cell cycle arrest. It is less clear if repression is important for other p53 functions. A comprehensive knowledge of the genes repressed by p53 and the cellular processes they affect is currently lacking. We used an expression profiling strategy to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes represented on the Affymetrix U133A microarray were repressed more than two fold (p ≤ 0.05) by p53. An objective assessment of array data quality was carried out using RT-PCR of 20 randomly selected genes. We estimate a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis was used to identify cellular processes potentially affected by p53-mediated repression. Cell cycle regulatory genes exhibited significant enrichment (p ≤ 5E-28) within the repressed targets. Several of these genes are repressed in a p53-dependent manner following DNA damage, but preceding cell cycle arrest. These findings identify novel p53-repressed targets and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g., p21), but also the repression of targets that act at each phase of the cell cycle. The mechanism of repression of this set of p53 targets was investigated. Most of the repressed genes identified here do not harbor consensus p53 DNA binding sites but do contain binding sites for E2F transcription factors. We demonstrate a role for E2F/RB repressor complexes in our system. Importantly, p53 is found at the promoter of CDC25A. CDC25A protein is rapidly degraded in response to DNA damage. Our group has demonstrated for the first time that CDC25A is also repressed at the transcript level by p53. This work has important implications for understanding the DNA damage cell cycle checkpoint response and the link between E2F/RB complexes and p53 in the repression of target genes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer cell lines can be treated with a drug and the molecular comparison of responders and non-responders may yield potential predictors that could be tested in the clinic. It is a bioinformatics challenge to apply the cell line-derived multivariable response predictors to patients who respond to therapy. Using the gene expression data from 23 breast cancer cell lines, I developed three predictors of dasatinib sensitivity by selecting differentially expressed genes and applying different classification algorithms. The performance of these predictors on independent cell lines with known dasatinib response was tested. The predictor based on weighted voting method has the best overall performance. It correctly predicted dasatinib sensitivity in 11 out of 12 (92%) breast and 17 out of 23 (74%) lung cancer cell lines. These predictors were then applied to the gene expression data from 133 breast cancer patients in an attempt to predict how the patients might respond to dasatinib therapy. Two predictors identified 13 patients in common to be dasatinib sensitive. Sixty two percent of these cases are triple negative (ER-negative, HER2-negative and PR-negative) and 76% are double negative. The result is consistent with the findings from other studies, which identified a target population for dasatinib treatment to be triple negative or basal breast cancer subtype. In conclusion, we think that the cell line-derived dasatinib classifiers can be applied to the human patients. ^