968 resultados para RECURRENT APHTHOUS STOMATITIS
Resumo:
Infectious vesicular stomatitis virus (VSV), the prototypic nonsegmented negative-strand RNA virus, was recovered from a full-length cDNA clone of the viral genome. Bacteriophage T7 RNA polymerase expressed from a recombinant vaccinia virus was used to drive the synthesis of a genome-length positive-sense transcript of VSV from a cDNA clone in baby hamster kidney cells that were simultaneously expressing the VSV nucleocapsid protein, phosphoprotein, and polymerase from separate plasmids. Up to 10(5) infectious virus particles were obtained from transfection of 10(6) cells, as determined by plaque assays. This virus was amplified on passage, neutralized by VSV-specific antiserum, and shown to possess specific nucleotide sequence markers characteristic of the cDNA. This achievement renders the biology of VSV fully accessible to genetic manipulation of the viral genome. In contrast to the success with positive-sense RNA, attempts to recover infectious virus from negative-sense T7 transcripts were uniformly unsuccessful, because T7 RNA polymerase terminated transcription at or near the VSV intergenic junctions.
Resumo:
We assembled a DNA clone containing the 11,161-nt sequence of the prototype rhabdovirus, vesicular stomatitis virus (VSV), such that it could be transcribed by the bacteriophage T7 RNA polymerase to yield a full-length positive-strand RNA complementary to the VSV genome. Expression of this RNA in cells also expressing the VSV nucleocapsid protein and the two VSV polymerase subunits resulted in production of VSV with the growth characteristics of wild-type VSV. Recovery of virus from DNA was verified by (i) the presence of two genetic tags generating restriction sites in DNA derived from the genome, (ii) direct sequencing of the genomic RNA of the recovered virus, and (iii) production of a VSV recombinant in which the glycoprotein was derived from a second serotype. The ability to generate VSV from DNA opens numerous possibilities for the genetic analysis of VSV replication. In addition, because VSV can be grown to very high titers and in large quantities with relative ease, it may be possible to genetically engineer recombinant VSVs displaying foreign antigens. Such modified viruses could be useful as vaccines conferring protection against other viruses.
Resumo:
Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.
Resumo:
Beta-hemolytic streptococci of groups C and G, designated as Streptococcus dysgalactiae (SD), can cause severe and recurring invasive infections. In this case-control study, we aimed to identify clinical and molecular risk factors for recurrence of SD bacteremia. Twenty-two cases of recurrent SD bacteremia were identified, and median time between episodes was 6 months. The most frequent clinical manifestation was skin and soft tissue infection. Cases and 92 controls, with single-episode SD bacteremia, showed similar demographics, had similar Charlson comorbidity scores, and had similar clinical presentations. Thirty-day fatality was 13% among controls, whereas none of 22 cases died. In 19 cases (86%), the same emm type was encountered in both episodes. SD isolates from recurrent episodes and from single episodes had a similar emm type distribution. Thus, we did not identify clinical risk factors for recurrences. The high proportion of identical emm types in recurrent episodes indicates a host-specific colonization.
Resumo:
Stereotypies are abnormal repetitive behaviour patterns that are highly prevalent in laboratory mice and are thought to reflect impaired welfare. Thus, they are associated with impaired behavioural inhibition and may also reflect negative affective states. However, in mice the relationship between stereotypies and behavioural inhibition is inconclusive, and reliable measures of affective valence are lacking. Here we used an exploration based task to assess cognitive bias as a measure of affective valence and a two-choice guessing task to assess recurrent perseveration as a measure of impaired behavioural inhibition to test mice with different forms and expression levels of stereotypic behaviour. We trained 44 CD- 1 and 40 C57BL/6 female mice to discriminate between positively and negatively cued arms in a radial maze and tested their responses to previously inaccessible ambiguous arms. In CD-1 mice (i) mice with higher stereotypy levels displayed a negative cognitive bias and this was influenced by the form of stereotypy performed, (ii) negative cognitive bias was evident in back-flipping mice, and (iii) no such effect was found in mice displaying bar-mouthing or cage-top twirling. In C57BL/6 mice neither route-tracing nor bar-mouthing was associated with cognitive bias, indicating that in this strain these stereotypies may not reflect negative affective states. Conversely, while we found no relation of stereotypy to recurrent perseveration in CD-1 mice, C57BL/6 mice with higher levels of route-tracing, but not bar-mouthing made more repetitive responses in the guessing task. Our findings confirm previous research indicating that the implications of stereotypies for animal welfare may strongly depend on the species and strain of animal as well as on the form and expression level of the stereotypy. Furthermore, they indicate that variation in stereotypic behaviour may represent an important source of variation in many animal experiments.
Resumo:
Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 44-48.
Resumo:
Laryngeal papillomatosis is a benign disease of lhe larynx caused by human papilloma virus. The disease has u variable clinical course and treatment focuses on debridement until clinical remission. The most common technique for removing the papilloma is by carbon dioxide laser ublution. Powered microdebridement. which is more familiar to endoscopic sinus surgeons, has been adapted for use in the larynx. We would like to report on this technique for removal of respiratory papillomas that we believe to be safer for both patients and staff. The cases of seven paediatric patients with recurrent respiratory papillomatosis treated with microdebridement of their papillomas have been retrospectively reviewed.
Resumo:
Generalization performance in recurrent neural networks is enhanced by cascading several networks. By discretizing abstractions induced in one network, other networks can operate on a coarse symbolic level with increased performance on sparse and structural prediction tasks. The level of systematicity exhibited by the cascade of recurrent networks is assessed on the basis of three language domains. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Despite the standardisation of surgical techniques and significant progress in chemotherapeutics over the last 30 years, advanced epithelial ovarian cancer remains the most lethal gynaecological malignancy in the western world. Although the majority of women achieve a remission following primary therapy, most patients with advanced stage disease will eventually relapse and become candidates for 'salvage' therapy. The chances of a further remission depend on factors such as the 'treatment-free interval', and there are now a large number of chemotherapy agents with activity in ovarian cancer available to the oncologist. Recent randomised studies have reported on survival benefits for chemotherapy in recurrent disease, and therefore careful and appropriate selection of treatments has assumed a greater importance. This article reviews the most current data, and discusses the factors involved in making individualised treatment decisions.