927 resultados para Rúiga (Latvia)--Buildings
Resumo:
Taking a perspective from a whole building lifecycle, occupier's actions could account for about 50% of energy. However occupants' activities influence building energy performance is still a blind area. Building energy performance is thought to be the result of a combination of building fabrics, building services and occupants' activities, along with their interactions. In this sense, energy consumption in built environment is regarded as a socio-technical system. In order to understand how such a system works, a range of physical, technical and social information is involved that needs to be integrated and aligned. This paper has proposed a semiotic framework to add value for Building Information Modelling, incorporating energy-related occupancy factors in a context of office buildings. Further, building information has been addressed semantically to describe a building space from the facility management perspective. Finally, the framework guides to set up building information representation system, which can help facility managers to manage buildings efficiently by improving their understanding on how office buildings are operated and used.
Resumo:
The objective of this article is to review the scientific literature on airflow distribution systems and ventilation effectiveness to identify and assess the most suitable room air distribution methods for various spaces. In this study, different ventilation systems are classified according to specific requirements and assessment procedures. This study shows that eight ventilation methods have been employed in the built environment for different purposes and tasks. The investigation shows that numerous studies have been carried out on ventilation effectiveness but few studies have been done regarding other aspects of air distribution. Amongst existing types of ventilation systems, the performance of each ventilation methods varies from one case to another due to different usages of the ventilation system in a room and the different assessment indices used. This review shows that the assessment of ventilation effectiveness or efficiency should be determined according to each task of the ventilation system, such as removal of heat, removal of pollutant, supply fresh air to the breathing zone or protecting the occupant from cross infection. The analysis results form a basic framework regarding the application of airflow distribution for the benefit of designers, architects, engineers, installers and building owners.
Resumo:
The modern built environment has become more complex in terms of building types, environmental systems and use profiles. This complexity causes difficulties in terms of optimising buildings energy design. In this circumstance, introducing a set of prototype reference buildings, or so called benchmark buildings, that are able to represent all or majority parts of the UK building stock may be useful for the examination of the impact of national energy policies on building energy consumption. This study proposes a set of reference office buildings for England and Wales based on the information collected from the Non-Domestic Building Stock (NDBS) project and an intensive review of the existing building benchmarks. The proposed building benchmark comprises 10 prototypical reference buildings, which in relation to built form and size, represent 95% of office buildings in England and Wales. This building benchmark provides a platform for those involved in building energy simulations to evaluate energy-efficiency measures and for policy-makers to assess the influence of different building energy policies.
Resumo:
Building designs regularly fail to achieve the anticipated levels of in-use energy consumption. The interaction of occupants with building controls is often cited as a key factor behind this discrepancy. This paper examines whether one factor in inadvertent energy consumption might be the appearance of post-completion errors (when an intended action is not taken because a primary goal has already been accomplished) in occupants’ interactions with building controls. Post-completion errors have been widely studied in human-computer interaction but the concept has not previously been applied to the interaction of occupants with building controls. Two experiments were carried out to examine the effect of incorporating two different types of simple prompt to reduce post-completion error in the use of light switches in office meeting rooms. Results showed that the prompts were effective and that occupants switched off lights when leaving the room more often when presented with a normative prompt than with a standard injunction. Additionally, an over reliance on PIR sensors to turn off lights after meetings was observed, which reduced their intended energy savings. We conclude that achieving low carbon buildings in practice is not solely a technological issue and that application of user-models from human-computer interaction will encourage appropriate occupant interaction with building controls and help reduce inadvertent energy consumption.
Resumo:
This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.
Resumo:
A great number of studies on wind conditions in passages between slab-type buildings have been conducted in the past. However, wind conditions under different structure and configuration of buildings is still unclear and studies existed still can’t provide guidance on urban planning and design, due to the complexity of buildings and aerodynamics. The aim of this paper is to provide more insight in the mechanism of wind conditions in passages. In this paper, a simplified passage model with non-parallel buildings is developed on the basis of the wind tunnel experiments conducted by Blocken et al. (2008). Numerical simulation based on CFD is employed for a detailed investigation of the wind environment in passages between two long narrow buildings with different directions and model validation is performed by comparing numerical results with corresponding wind tunnel measurements.
Resumo:
The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the “whole life circle” for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.
Resumo:
It is widely accepted that there is a gap between design energy and real world operational energy consumption. The behaviour of occupants is often cited as an important factor influencing building energy performance. However, its consideration, both during design and operation, is overly simplistic, often assuming a direct link between attitudes and behaviour. Alternative models of decision making from psychology highlight a range of additional influential factors and emphasise that occupants do not always act in a rational manner. Developing a better understanding of occupant decision making could help inform office energy conservation campaigns as well as models of behaviour employed during the design process. This paper assesses the contribution of various behavioural constructs on small power consumption in offices. The method is based upon the Theory of Planned Behaviour (TPB) which assumes that intention is driven by three factors: attitude, subjective norms, and perceived behavioural control, but we also consider a fourth construct: habit measured through the Self- Report Habit Index (SRHI). A questionnaire was issued to 81 participants in two UK offices. Questionnaire results for each behavioural construct were correlated against each participant’s individual workstation electricity consumption. The intentional processes proposed by TPB could not account for the observed differences in occupants’ interactions with small power appliances. Instead, occupants were interacting with small power “automatically”, with habit accounting for 11% of the variation in workstation energy consumption. The implications for occupant behaviour models and employee engagement campaigns are discussed.
Resumo:
This paper evaluates the impact of the crusades on the landscape and environment of northern Latvia between the 13th–16th centuries (medieval Livonia). The crusades replaced tribal societies in the eastern Baltic with a religious state (Ordenstaat) run by the military orders and their allies, accompanied by significant social, cultural and economic developments. These changes have previously received little consideration in palaeoenvironmental studies of past land use in the eastern Baltic region, but are fundamental to understanding the development and expansion of a European Christian identity. Sediment cores from Lake Trikāta, located adjacent to a medieval castle and settlement, were studied using pollen, macrofossils, loss-on-ignition and magnetic susceptibility. Our results show that despite continuous agricultural land use from 500 BC, the local landscape was still densely wooded until the start of the crusades in AD 1198 when a diversified pattern of pasture, meadow and arable land use was established. Colonisation followed the crusades, although in Livonia this occurred on a much smaller scale than in the rest of the Ordenstaat; Trikāta is atypical showing significant impact following the crusades with many other palaeoenvironmental studies only revealing more limited impact from the 14th century and later. Subsequent wars and changes in political control in the post-medieval period had little apparent effect on agricultural land use.
Resumo:
The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.