981 resultados para Proto-Oncogene Protein c-ets-1
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSION: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
BACKGROUND & AIMS: Genetic variation in the interleukin 28B (IL28B) gene has been associated with the response to interferon-alfa/ribavirin therapy in hepatitis C virus (HCV) genotype 1-infected patients. The importance of three IL28B single nucleotide polymorphisms (rs8099917, rs12980275 and rs12979860) for HCV genotype 2/3-infected patients is unknown. METHODS: In patients with chronic hepatitis C genotype 2/3 (n=267), IL28B host genotypes (rs8099917, rs12980275 and rs12979860) were analyzed for associations with sustained virologic response (SVR) to antiviral therapy with (pegylated) interferon-alfa and ribavirin and with respect to epidemiological, biochemical, and virological parameters. For comparison, hepatitis C genotype 1 patients (n=378) and healthy controls (n=200) were included. RESULTS: The rs12979860 CC genotype, lower age, and genotype 2 were significantly associated with SVR in HCV genotype 2/3-infected patients (p=0.01, p=0.03 and p=0.03, respectively). No association was observed for rs8099917 and rs12980275. In addition, an SVR in patients with rapid virologic response (RVR) was associated with the rs12979860 CC genotype (p=0.05), while for non-RVR no association was found. Furthermore, a significant association with a higher baseline viral load was observed for all three IL28B genotypes in genotype 1/2/3-infected patients. Finally, increasing frequencies of the rs12979860 CC genotypes were observed in genotype 1- (33.9%), genotype 3- (38.9%), and genotype 2-infected (51.9%) patients in comparison with healthy controls (49.0%) (p<0.01). CONCLUSIONS: In genotype 2/3-infected patients, rs12979860 was significantly associated with SVR. The frequency of the rs12979860 CC genotype is lower in HCV genotype 1 vs. genotype 2/3 patients. All major IL28B genotypes are associated with HCV-RNA concentration.
Resumo:
CCAAT/enhancer-binding protein (C/EBP) family members are transcription factors involved in important physiological processes, such as cellular proliferation and differentiation, regulation of energy homeostasis, inflammation, and hematopoiesis. Transcriptional activation by C/EBPalpha and C/EBPbeta involves the coactivators CREB-binding protein (CBP) and p300, which promote transcription by acetylating histones and recruiting basal transcription factors. In this study, we show that C/EBPdelta is also using CBP as a coactivator. Based on sequence homology with C/EBPalpha and -beta, we identify in C/EBPdelta two conserved amino acid segments that are necessary for the physical interaction with CBP. Using reporter gene assays, we demonstrate that mutation of these residues prevents CBP recruitment and diminishes the transactivating potential of C/EBPdelta. In addition, our results indicate that C/EBP family members not only recruit CBP but specifically induce its phosphorylation. We provide evidence that CBP phosphorylation depends on its interaction with C/EBPdelta and define point mutations within one of the two conserved amino acid segments of C/EBPdelta that abolish CBP phosphorylation as well as transcriptional activation, suggesting that this new mechanism could be important for C/EBP-mediated transcription.
Resumo:
Full signal intensity (1)H-[(13)C] NMR spectroscopy, combining a preceding (13)C-editing block based on an inversion BISEP (B(1)-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. (13)C editing of the proposed scheme was achieved by turning on and off the (13)C adiabatic full passage in the (13)C-editing block to prepare inverted and noninverted (13)C-coupled (1)H coherences along the longitudinal axis prior to localization. The novel (1)H-[(13)C] NMR approach was applied in vivo under infusion of the glia-specific substrate [2-(13)C] acetate. Besides a approximately 50% improvement in sensitivity, spectral dispersion was enhanced at 14.1 T, especially for J-coupled metabolites such as glutamate and glutamine. A more distinct spectral structure at 1.9-2.2 ppm(parts per million) was observed, e.g., glutamate C3 showed a doublet pattern in both simulated (1)H spectrum and in vivo (13)C-edited (1)H NMR spectra. Besides (13)C time courses of glutamate C4 and glutamine C4, the time courses of glutamate C3 and glutamine C3 obtained by (1)H-[(13)C] NMR spectroscopy were reported for the first time. Such capability should greatly improve the ability to study neuron-glial metabolism using (1)H-observed (13)C-edited NMR spectroscopy.
Resumo:
The outcome of a viral infection depends on the interplay between the host's capacity to trigger potent antiviral responses and viral mechanisms that counteract them. Although Toll-like receptor (TLR)-3, which recognizes virally derived double-stranded (ds) RNA, transmits downstream antiviral signaling through the TIR adaptor Trif (TICAM-1), viral RNA-sensing RIG-like helicases (RLHs) use the mitochondrial-bound CARD protein Cardif (IPS-1/MAVS/VISA). The importance of these two antiviral signaling pathways is reflected by the fact that both adaptors are inhibited through specific cleavage triggered by the hepatitis C virus serine protease NS3-4A. Here, we show that inactivation can also occur through cellular caspases activated by various pro-apoptotic signals. Upon caspase-dependent cleavage both adaptors loose their capacity to activate the transcription factors interferon regulatory factors (IRF) and NF-kappaB. Importantly, poliovirus infection triggers a caspase-dependent cleavage of Cardif, suggesting that some viruses may activate caspases not only as a mean to facilitate shedding and replication, but also to impair antiviral responses
Resumo:
Background and Aims: Vitamin D is an important modulatorof numerous cellular processes. Some of us recently observedan association of the 1a-hydroxylase promoter polymorphismCYP27B1-1260 rs10877012 with sustained virologic response (SVR)in a relatively small number of German patients with chronichepatitis C. In the present study, we aimed to validate thisassociation in a large and well characterized patient cohort, theSwiss Hepatitis C Cohort Study (SCCS). In addition, we examinedthe effect of vitamin D on the hepatitis C virus (HCV) life cyclein vitro.Methods: CYP27B1-1260 rs10877012 and IL28B rs12979860 singlenucleotide polymorphisms (SNPs) were genotyped in 1049 patientswith chronic hepatitis C from the SCCS, of whom 698 were treatedwith pegylated interferon-a (PEG-IFN-a) and ribavirin. In addition,112 patients with spontaneous clearance of HCV were examined.SNPs were correlated with variables reflecting the natural courseand treatment outcome of chronic hepatitis C. The effect of1,25-(OH)2D3 (calcitriol) on HCV replication and viral particleproduction was investigated in vitro using human hepatoma celllines (Huh-7.5) harbouring subgenomic replicons and cell culturederivedHCV.Results: The CYP27B1-1260 rs10877012 genotype was notassociated with SVR in patients with the good-response IL28Brs1279860 CC genotype. However, in patients with poor-responseIL28B rs1279860 genotype CT and TT, CYP27B1-1260 rs10877012was a significant independent predictor of SVR (15% difference inSVR between rs10877012 genotype AA vs. CC, p = 0.030, OR = 1.495,95% CI = 1.038-2.152). The CYPB27-1260 rs10877012 genotype wasneither associated with spontaneous clearance of HCV, nor withliver fibrosis progression rate, inflammatory activity of chronichepatitis C, or HCV viral load. Physiological doses of 1,25-(OH)2D3did not significantly affect HCVRNA replication or infectiousparticle production in vitro.Conclusions: The results of this large-scale genetic validationstudy reveal a role of vitamin D metabolism in the responseto treatment in chronic hepatitis C, but 1,25-(OH)2D3 does notexhibit a significant direct inhibitory antiviral effect. Thus, theability of vitamin D to modulate immunity against HCV shouldbe investigated.
Resumo:
Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell-mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1⁺ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.
Resumo:
As a hallmark of tuberculosis (TB), Mycobacterium tuberculosis (MTB) induces granulomatous lung lesions and systemic inflammatory responses during active disease. Molecular regulation of inflammation is associated with inflammasome assembly. We determined the extent to which MTB triggers inflammasome activation and how this impacts on the severity of TB in a mouse model. MTB stimulated release of mature IL-1β in macrophages while attenuated M. bovis BCG failed to do so. Tubercle bacilli specifically activated the NLRP3 inflammasome and this propensity was strictly controlled by the virulence-associated RD1 locus of MTB. However, Nlrp3-deficient mice controlled pulmonary TB, a feature correlated with NLRP3-independent production of IL-1β in infected lungs. Our studies demonstrate that MTB activates the NLRP3 inflammasome in macrophages in an ESX-1-dependent manner. However, during TB, MTB promotes NLRP3- and caspase-1-independent IL-1β release in myeloid cells recruited to lung parenchyma and thus overcomes NLRP3 deficiency in vivo in experimental models.
Resumo:
PURPOSE: Mutations within the KRAS proto-oncogene have predictive value but are of uncertain prognostic value in the treatment of advanced colorectal cancer. We took advantage of PETACC-3, an adjuvant trial with 3,278 patients with stage II to III colon cancer, to evaluate the prognostic value of KRAS and BRAF tumor mutation status in this setting. PATIENTS AND METHODS: Formalin-fixed paraffin-embedded tissue blocks (n = 1,564) were prospectively collected and DNA was extracted from tissue sections from 1,404 cases. Planned analysis of KRAS exon 2 and BRAF exon 15 mutations was performed by allele-specific real-time polymerase chain reaction. Survival analyses were based on univariate and multivariate proportional hazard regression models. RESULTS: KRAS and BRAF tumor mutation rates were 37.0% and 7.9%, respectively, and were not significantly different according to tumor stage. In a multivariate analysis containing stage, tumor site, nodal status, sex, age, grade, and microsatellite instability (MSI) status, KRAS mutation was associated with grade (P = .0016), while BRAF mutation was significantly associated with female sex (P = .017), and highly significantly associated with right-sided tumors, older age, high grade, and MSI-high tumors (all P < 10(-4)). In univariate and multivariate analysis, KRAS mutations did not have a major prognostic value regarding relapse-free survival (RFS) or overall survival (OS). BRAF mutation was not prognostic for RFS, but was for OS, particularly in patients with MSI-low (MSI-L) and stable (MSI-S) tumors (hazard ratio, 2.2; 95% CI, 1.4 to 3.4; P = .0003). CONCLUSION: In stage II-III colon cancer, the KRAS mutation status does not have major prognostic value. BRAF is prognostic for OS in MS-L/S tumors.
Resumo:
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
Resumo:
São apresentadas duas cultivares de algodoeiro anual (Gossypium hirsutum L.), EPAMIG-4 (Redenção) e EPAMIG-5 (Precoce-1) lançadas pela Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG) para o plantio nas regiões algodoeiras do mesmo Estado. Suas características agronômicas e de fibra são descritas em valores absolutos e em comparação com a cultivar-testemunha utilizada. A primeira originou-se de seleção em campo de produção da cultivar IAC-17, e é recomendada para plantio em todo o Estado de Minas Gerais, enquanto a segunda foi originada de seleção sobre a linhagem introduzida "C-25-1-80", e é recomendada para o plantio na região norte de Minas Gerais. As cultivares em questão são altamente produtivas, tanto em condições de sequeiro quanto sob irrigação, e apresentam excelentes características agronômicas e de qualidade de fibra.
Resumo:
Background: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. Conclusion: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits proinflammatory and pro-thrombotic responses in healthy young men. [Authors]
Resumo:
Novel therapeutic agents targeting the epidermal growth factor receptor (EGFR) have improved outcomes for patients with colorectal carcinoma. However, these therapies are effective only in a subset of patients. Activating mutations in the KRAS gene are found in 30-40% of colorectal tumors and are associated with poor response to anti-EGFR therapies. Thus, KRAS mutation status can predict which patient may or may not benefit from anti-EGFR therapy. Although many diagnostic tools have been developed for KRAS mutation analysis, validated methods and standardized testing procedures are lacking. This poses a challenge for the optimal use of anti-EGFR therapies in the management of colorectal carcinoma. Here we review the molecular basis of EGFR-targeted therapies and the resistance to treatment conferred by KRAS mutations. We also present guideline recommendations and a proposal for a European quality assurance program to help ensure accuracy and proficiency in KRAS mutation testing across the European Union.
Resumo:
Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals" knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2.