850 resultados para Private cloud computing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: To discuss how current research in the area of smart homes and ambient assisted living will be influenced by the use of big data. Methods: A scoping review of literature published in scientific journals and conference proceedings was performed, focusing on smart homes, ambient assisted living and big data over the years 2011-2014. Results: The health and social care market has lagged behind other markets when it comes to the introduction of innovative IT solutions and the market faces a number of challenges as the use of big data will increase. First, there is a need for a sustainable and trustful information chain where the needed information can be transferred from all producers to all consumers in a structured way. Second, there is a need for big data strategies and policies to manage the new situation where information is handled and transferred independently of the place of the expertise. Finally, there is a possibility to develop new and innovative business models for a market that supports cloud computing, social media, crowdsourcing etc. Conclusions: The interdisciplinary area of big data, smart homes and ambient assisted living is no longer only of interest for IT developers, it is also of interest for decision makers as customers make more informed choices among today's services. In the future it will be of importance to make information usable for managers and improve decision making, tailor smart home services based on big data, develop new business models, increase competition and identify policies to ensure privacy, security and liability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 10th European Conference on Information Systems Management is being held at The University of Evora, Portugal on the 8 /9 September 2016. The Conference Chair is Paulo Silva and the Programme Chairs are Prof. Rui Quaresma and Prof. António Guerreiro. ECISM provides an opportunity for individuals researching and working in the broad field of information systems management, including IT evaluation to come together to exchange ideas and discuss current research in the field. This has developed into a particularly important forum for the present era, where the modern challenges of managing information and evaluating the effectiveness of related technologies are constantly evolving in the world of Big Data and Cloud Computing. We hope that this year’s conference will provide you with plenty of opportunities to share your expertise with colleagues from around the world. The keynote speakers for the Conference are Carlos Zorrinho from the Portuguese Delegation and Isabel Ramos from University of Minho, Portugal. ECISM 2016 received an initial submission of 84 abstracts. After the double blind peer review process 25 aca demic papers, 7 PhD research papers, 3 Masters research paper and 5 work in progress papers have been ac cepted for publication in these Conference Proceedings. These papers represent research from around the world, including Belgium, Brazil, China, Czech Republic, Kazakhstan, Malaysia, New Zealand, Norway, Oman, Poland, Portugal, South Africa, Sweden, The Netherlands, UK and Vietnam.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the study and experimental tests for the viability analysis of using multiple wireless technologies in urban traffic light controllers in a Smart City environment. Communication drivers, different types of antennas, data acquisition methods and data processing for monitoring the network are presented. The sensors and actuators modules are connected in a local area network through two distinct low power wireless networks using both 868 MHz and 2.4 GHz frequency bands. All data communications using 868 MHz go through a Moteino. Various tests are made to assess the most advantageous features of each communication type. The experimental results show better range for 868 MHz solutions, whereas the 2.4 GHz presents the advantage of self-regenerating the network and mesh. The different pros and cons of both communication methods are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modern industrial environment is populated by a myriad of intelligent devices that collaborate for the accomplishment of the numerous business processes in place at the production sites. The close collaboration between humans and work machines poses new interesting challenges that industry must overcome in order to implement the new digital policies demanded by the industrial transition. The Industry 5.0 movement is a companion revolution of the previous Industry 4.0, and it relies on three characteristics that any industrial sector should have and pursue: human centrality, resilience, and sustainability. The application of the fifth industrial revolution cannot be completed without moving from the implementation of Industry 4.0-enabled platforms. The common feature found in the development of this kind of platform is the need to integrate the Information and Operational layers. Our thesis work focuses on the implementation of a platform addressing all the digitization features foreseen by the fourth industrial revolution, making the IT/OT convergence inside production plants an improvement and not a risk. Furthermore, we added modular features to our platform enabling the Industry 5.0 vision. We favored the human centrality using the mobile crowdsensing techniques and the reliability and sustainability using pluggable cloud computing services, combined with data coming from the crowd support. We achieved important and encouraging results in all the domains in which we conducted our experiments. Our IT/OT convergence-enabled platform exhibits the right performance needed to satisfy the strict requirements of production sites. The multi-layer capability of the framework enables the exploitation of data not strictly coming from work machines, allowing a more strict interaction between the company, its employees, and customers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time Series Analysis of multispectral satellite data offers an innovative way to extract valuable information of our changing planet. This is now a real option for scientists thanks to data availability as well as innovative cloud-computing platforms, such as Google Earth Engine. The integration of different missions would mitigate known issues in multispectral time series construction, such as gaps due to clouds or other atmospheric effects. With this purpose, harmonization among Landsat-like missions is possible through statistical analysis. This research offers an overview of the different instruments from Landsat and Sentinel missions (TM, ETM, OLI, OLI-2 and MSI sensors) and products levels (Collection-2 Level-1 and Surface Reflectance for Landsat and Level-1C and Level-2A for Sentinel-2). Moreover, a cross-sensors comparison was performed to assess the interoperability of the sensors on-board Landsat and Sentinel-2 constellations, having in mind a possible combined use for time series analysis. Firstly, more than 20,000 pairs of images almost simultaneously acquired all over Europe were selected over a period of several years. The study performed a cross-comparison analysis on these data, and provided an assessment of the calibration coefficients that can be used to minimize differences in the combined use. Four of the most popular vegetation indexes were selected for the study: NDVI, EVI, SAVI and NDMI. As a result, it is possible to reconstruct a longer and denser harmonized time series since 1984, useful for vegetation monitoring purposes. Secondly, the spectral characteristics of the recent Landsat-9 mission were assessed for a combined use with Landsat-8 and Sentinel-2. A cross-sensor analysis of common bands of more than 3,000 almost simultaneous acquisitions verified a high consistency between datasets. The most relevant discrepancy has been observed in the blue and SWIRS bands, often used in vegetation and water related studies. This analysis was supported with spectroradiometer ground measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Negli ultimi anni la necessità di processare e mantenere dati di qualsiasi natura è aumentata considerevolmente, in aggiunta a questo, l’obsolescenza del modello centralizzato ha contribuito alla sempre più frequente adozione del modello distribuito. Inevitabile dunque l’aumento di traffico che attraversa i nodi appartenenti alle infrastrutture, un traffico sempre più in aumento e che con l’avvento dell’IoT, dei Big Data, del Cloud Computing, del Serverless Computing etc., ha raggiunto picchi elevatissimi. Basti pensare che se prima i dati erano contenuti in loco, oggi non è assurdo pensare che l’archiviazione dei propri dati sia completamente affidata a terzi. Così come cresce, quindi, il traffico che attraversa i nodi facenti parte di un’infrastruttura, cresce la necessità che questo traffico sia filtrato e gestito dai nodi stessi. L’obbiettivo di questa tesi è quello di estendere un Message-oriented Middleware, in grado di garantire diverse qualità di servizio per la consegna di messaggi, in modo da accelerarne la fase di routing verso i nodi destinazione. L’estensione consiste nell’aggiungere al Message-oriented Middleware, precedentemente implementato, la funzione di intercettare i pacchetti in arrivo (che nel caso del middleware in questione possono rappresentare la propagazione di eventi) e redirigerli verso un nuovo nodo in base ad alcuni parametri. Il Message-oriented Middleware oggetto di tesi sarà considerato il message broker di un modello pub/sub, pertanto la redirezione deve avvenire con tempi molto bassi di latenza e, a tal proposito, deve avvenire senza l’uscita dal kernel space del sistema operativo. Per questo motivo si è deciso di utilizzare eBPF, in particolare il modulo XDP, che permette di scrivere programmi che eseguono all’interno del kernel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Con il lancio di nuove applicazioni tecnologiche come l'Internet of Things, Big Data, Cloud computing e tecnologie mobili che stanno accelerando in maniera spropositata la velocità di cambiamento, i comportamenti, le abitudini e i modi di vivere sono completamente mutati nel favorire un mondo di tecnologie digitali che agevolino le operazioni quotidiane. Questi progressi stanno velocemente cambiando il modo in cui le aziende fanno business, con grandi ripercussioni in tutto quello che è il contesto aziendale, ma non solo. L’avvento della Digital Transformation ha incrementato questi fenomeni e la si potrebbe definire come causa scatenante di tutti i mutamenti che stiamo vivendo. La velocità e l’intensità del cambiamento ha effetti disruptive rispetto al passato, colpendo numerosi settori economici ed abitudini dei consumatori. L’obiettivo di questo elaborato è di analizzare la trasformazione digitale applicata al caso dell’azienda Alfa, comprendendone le potenzialità. In particolare, si vogliono studiare i principali risvolti portati da tale innovazione, le più importanti iniziative adottate in merito alle nuove tecnologie implementate e i benefici che queste portano in campo strategico, di business e cultura aziendale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questo lavoro di tesi è incentrato sullo sviluppo di una soluzione applicativa nell'ambito dell'integrazione di sistemi software basati su tecnologie considerate legacy. In particolar modo è stato studiata una soluzione integrativa per il popolare ERP gestionale Sap su piattaforma Cloud OpenShift. La soluzione è articolata su diversi livelli basati sull'architettura proposta da Gartner nell'ambito della Digital Integration Hub. È stata sviluppata tramite tecnologie open source leader nel settore e tecnologie cloud avanzate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The usage of Optical Character Recognition’s (OCR, systems is a widely spread technology into the world of Computer Vision and Machine Learning. It is a topic that interest many field, for example the automotive, where becomes a specialized task known as License Plate Recognition, useful for many application from the automation of toll road to intelligent payments. However, OCR systems need to be very accurate and generalizable in order to be able to extract the text of license plates under high variable conditions, from the type of camera used for acquisition to light changes. Such variables compromise the quality of digitalized real scenes causing the presence of noise and degradation of various type, which can be minimized with the application of modern approaches for image iper resolution and noise reduction. Oneclass of them is known as Generative Neural Networks, which are very strong ally for the solution of this popular problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In today's internet world, web browsers are an integral part of our day-to-day activities. Therefore, web browser security is a serious concern for all of us. Browsers can be breached in different ways. Because of the over privileged access, extensions are responsible for many security issues. Browser vendors try to keep safe extensions in their official extension galleries. However, their security control measures are not always effective and adequate. The distribution of unsafe extensions through different social engineering techniques is also a very common practice. Therefore, before installation, users should thoroughly analyze the security of browser extensions. Extensions are not only available for desktop browsers, but many mobile browsers, for example, Firefox for Android and UC browser for Android, are also furnished with extension features. Mobile devices have various resource constraints in terms of computational capabilities, power, network bandwidth, etc. Hence, conventional extension security analysis techniques cannot be efficiently used by end users to examine mobile browser extension security issues. To overcome the inadequacies of the existing approaches, we propose CLOUBEX, a CLOUd-based security analysis framework for both desktop and mobile Browser EXtensions. This framework uses a client-server architecture model. In this framework, compute-intensive security analysis tasks are generally executed in a high-speed computing server hosted in a cloud environment. CLOUBEX is also enriched with a number of essential features, such as client-side analysis, requirements-driven analysis, high performance, and dynamic decision making. At present, the Firefox extension ecosystem is most susceptible to different security attacks. Hence, the framework is implemented for the security analysis of the Firefox desktop and Firefox for Android mobile browser extensions. A static taint analysis is used to identify malicious information flows in the Firefox extensions. In CLOUBEX, there are three analysis modes. A dynamic decision making algorithm assists us to select the best option based on some important parameters, such as the processing speed of a client device and network connection speed. Using the best analysis mode, performance and power consumption are improved significantly. In the future, this framework can be leveraged for the security analysis of other desktop and mobile browser extensions, too.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Professional computing employment in Australia, as in most advanced economies, is highly sex segregated, reflecting well-rehearsed ideas about the masculinity of technology and computing culture. In this paper we are concerned with the processes of work organisation that sustain and reproduce this gendered occupational distribution, focusing in particular on differences and similarities in working-time arrangements between public and private sectors in the Australian context. While information technology companies are often highly competitive workplaces with individualised working arrangements, computing professionals work in a wide range of organisations with different regulatory histories and practices. Our goal is to investigate the implications of these variations for gender equity outcomes, using the public/private divide as indicative of different regulatory frameworks. We draw on Australian census data and a series of organisational case studies to compare working-time arrangements in professional computing employment across sectors, and to examine the various ways employees adapt and respond. Our analysis identifies a stronger ‘long hours culture’ in the private sector, but also underlines the rarity of part-time work in both sectors, and suggests that men and women tend to respond in different ways to these constraints. Although the findings highlight the importance of regulatory frameworks, the organisation of working time across sectors appears to be sustaining rather than challenging gender inequalities in computing employment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapidly increasing computing power, available storage and communication capabilities of mobile devices makes it possible to start processing and storing data locally, rather than offloading it to remote servers; allowing scenarios of mobile clouds without infrastructure dependency. We can now aim at connecting neighboring mobile devices, creating a local mobile cloud that provides storage and computing services on local generated data. In this paper, we describe an early overview of a distributed mobile system that allows accessing and processing of data distributed across mobile devices without an external communication infrastructure. Copyright © 2015 ICST.