943 resultados para Power take-off optimization
Resumo:
The development of new technologies that use peer-to-peer networks grows every day, with the object to supply the need of sharing information, resources and services of databases around the world. Among them are the peer-to-peer databases that take advantage of peer-to-peer networks to manage distributed knowledge bases, allowing the sharing of information semantically related but syntactically heterogeneous. However, it is a challenge to ensure the efficient search for information without compromising the autonomy of each node and network flexibility, given the structural characteristics of these networks. On the other hand, some studies propose the use of ontology semantics by assigning standardized categorization of information. The main original contribution of this work is the approach of this problem with a proposal for optimization of queries supported by the Ant Colony algorithm and classification though ontologies. The results show that this strategy enables the semantic support to the searches in peer-to-peer databases, aiming to expand the results without compromising network performance. © 2011 IEEE.
Resumo:
Deterministic Optimal Reactive Power Dispatch problem has been extensively studied, such that the demand power and the availability of shunt reactive power compensators are known and fixed. Give this background, a two-stage stochastic optimization model is first formulated under the presumption that the load demand can be modeled as specified random parameters. A second stochastic chance-constrained model is presented considering uncertainty on the demand and the equivalent availability of shunt reactive power compensators. Simulations on six-bus and 30-bus test systems are used to illustrate the validity and essential features of the proposed models. This simulations shows that the proposed models can prevent to the power system operator about of the deficit of reactive power in the power system and suggest that shunt reactive sourses must be dispatched against the unavailability of any reactive source. © 2012 IEEE.
Closure to discussion on imposing radiality constraints in distribution system optimization problems
Resumo:
Traditionally, ancillary services are supplied by large conventional generators. However, with the huge penetration of distributed generators (DGs) as a result of the growing interest in satisfying energy requirements, and considering the benefits that they can bring along to the electrical system and to the environment, it appears reasonable to assume that ancillary services could also be provided by DGs in an economical and efficient way. In this paper, a settlement procedure for a reactive power market for DGs in distribution systems is proposed. Attention is directed to wind turbines connected to the network through synchronous generators with permanent magnets and doubly-fed induction generators. The generation uncertainty of this kind of DG is reduced by running a multi-objective optimization algorithm in multiple probabilistic scenarios through the Monte Carlo method and by representing the active power generated by the DGs through Markov models. The objectives to be minimized are the payments of the distribution system operator to the DGs for reactive power, the curtailment of transactions committed in an active power market previously settled, the losses in the lines of the network, and a voltage profile index. The proposed methodology was tested using a modified IEEE 37-bus distribution test system. © 1969-2012 IEEE.
Resumo:
In this work, a mathematical model to analyze the impact of the installation and operation of dispersed generation units in power distribution systems is proposed. The main focus is to determine the trade-off between the reliability and operational costs of distribution networks when the operation of isolated areas is allowed. In order to increase the system operator revenue, an optimal power flow makes use of the different energy prices offered by the dispersed generation connected to the grid. Simultaneously, the type and location of the protective devices initially installed on the protection system are reconfigured in order to minimize the interruption and expenditure of adjusting the protection system to conditions imposed by the operation of dispersed units. The interruption cost regards the unsupplied energy to customers in secure systems but affected by the normal tripping of protective devices. Therefore, the tripping of fuses, reclosers, and overcurrent relays aims to protect the system against both temporary and permanent fault types. Additionally, in order to reduce the average duration of the system interruption experienced by customers, the isolated operation of dispersed generation is allowed by installing directional overcurrent relays with synchronized reclose capabilities. A 135-bus real distribution system is used in order to show the advantages of using the mathematical model proposed. © 1969-2012 IEEE.
Resumo:
The capacitated redistricting problem (CRP) has the objective to redefine, under a given criterion, an initial set of districts of an urban area represented by a geographic network. Each node in the network has different types of demands and each district has a limited capacity. Real-world applications consider more than one criteria in the design of the districts, leading to a multicriteria CRP (MCRP). Examples are found in political districting, sales design, street sweeping, garbage collection and mail delivery. This work addresses the MCRP applied to power meter reading and two criteria are considered: compactness and homogeneity of districts. The proposed solution framework is based on a greedy randomized adaptive search procedure and multicriteria scalarization techniques to approximate the Pareto frontier. The computational experiments show the effectiveness of the method for a set of randomly generated networks and for a real-world network extracted from the city of São Paulo. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
ABSTRACT: The femtocell concept aims to combine fixed-line broadband access with mobile telephony using the deployment of low-cost, low-power third and fourth generation base stations in the subscribers' homes. While the self-configuration of femtocells is a plus, it can limit the quality of service (QoS) for the users and reduce the efficiency of the network, based on outdated allocation parameters such as signal power level. To this end, this paper presents a proposal for optimized allocation of users on a co-channel macro-femto network, that enable self-configuration and public access, aiming to maximize the quality of service of applications and using more efficiently the available energy, seeking the concept of Green networking. Thus, when the user needs to connect to make a voice or a data call, the mobile phone has to decide which network to connect, using the information of number of connections, the QoS parameters (packet loss and throughput) and the signal power level of each network. For this purpose, the system is modeled as a Markov Decision Process, which is formulated to obtain an optimal policy that can be applied on the mobile phone. The policy created is flexible, allowing different analyzes, and adaptive to the specific characteristics defined by the telephone company. The results show that compared to traditional QoS approaches, the policy proposed here can improve energy efficiency by up to 10%.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The hydroelectric power plant Hidroltuango represents a major expansion for the Colombian electrical system (with a total capacity of 2400 MW). This paper analyzes the possible interconnections and investments involved in connecting Hidroltuango, in order to strengthen the Colombian national transmission system. A Mixed Binary Linear Programming (MBLP) model was used to solve the Multistage Transmission Network Expansion Planning (MTEP) problem of the Colombian electrical system, taking the N-1 safety criterion into account. The N-1 safety criterion indicates that the transmission system must be expanded so that the system will continue to operate properly if an outage in a system element (within a pre-defined set of contingencies) occurs. The use of a MBLP model guaranteed the convergence with existing classical optimization methods and the optimal solution for the MTEP using commercial solvers. Multiple scenarios for generation and demand were used to consider uncertainties within these parameters. The model was implemented using the algebraic modeling language AMPL and solved using the commercial solver CPLEX. The proposed model was then applied to the Colombian electrical system using the planning horizon of 2018-2025. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)