968 resultados para Poisson-Boltzmann
Resumo:
A finite circular cylindrical shell subjected to a band of uniform pressure on its outer rim was investigated, using three-dimensional elasticity theory and the classical shell theories of Timoshenko (or Donnell) and Flügge. Detailed comparison of the resulting stresses and displacements was carried out for shells with ratios of inner to outer shell radii equal to 0.80, 0.85, 0.90 and 0.93 and for ratios of outer shell diameter to length of the shell equal to 0.5, 1 and 2. The ratio of band width to length of the shell was 0.2 and Poisson's ratio used was equal to 0.3. An Elliot 803 digital computer was used for numerical computations.
Resumo:
The probability that a random process crosses an arbitrary level for the first time is expressed as a Gram—Charlier series, the leading term of which is the Poisson approximation. The coefficients of this series are related to the moments of the number of level crossings. The results are applicable to both stationary and non-stationary processes. Some numerical results are presented for the response process of a linear single-degree-of-freedom oscillator under Gaussian white noise excitation.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.
Resumo:
The collisionless Boltzmann equation governing self-gravitating systems such as galaxies has recently been shown to admit exact oscillating solutions with planar and spherical symmetry. The relation of the spherically symmetric solutions to the Virial theorem, as well as generalizations to non-uniform spheres, uniform spheroids and discs form the subject of this paper. These models generalize known families of static solutions. The case of the spheroid is worked out in some detail. Quasiperiodic as well as chaotic time variation of the two axes is demonstrated by studying the surface of section for the associated Hamiltonian system with two degrees of freedom. The relation to earlier work and possible implications for the general problem of collisionless relaxation in self gravitating systems are also discussed.
Resumo:
Precipitation involving mixing of two sets of reverse micellar solutions-containing a reactant and precipitant respectively-has been analyzed. Particle formation in such systems has been simulated by a Monte Carlo (MC) scheme (Li, Y.; Park, C. W. Langmuir 1999, 15, 952), which however is very restrictive in its approach. We have simulated particle formation by developing a general Monte Carlo scheme, using the interval of quiescence technique (IQ). It uses Poisson distribution with realistic, low micellar occupancies of reactants, Brownian collision of micelles with coalescence efficiency, fission of dimers with binomial redispersion of solutes, finite nucleation rate of particles with critical number of molecules, and instantaneous particle growth. With the incorporation of these features, the previous work becomes a special case of our simulation. The present scheme was then used to predict experimental data on two systems. The first is the experimental results of Lianos and Thomas (Chem. Phys. Lett. 1986, 125, 299, J. Colloid Interface Sci. 1987, 117, 505) on formation of CdS nanoparticles. They reported the number of molecules in a particle as a function of micellar size and reactant concentrations, which have been predicted very well. The second is on the formation of Fe(OH)(3) nanoparticles, reported by Li and Park. Our simulation in this case provides a better prediction of the experimental particle size range than the prediction of the authors. The present simulation scheme is general and can be applied to explain nanoparticle formation in other systems.
Resumo:
Recent single molecule experiments have suggested the existence of a photochemical funnel in the photophysics of conjugated polymers, like poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene] (MEH-PPV). The funnel is believed to be a consequence of the presence of conformational or chemical defects along the polymer chain and efficient non-radiative energy transfer among different chromophore segments. Here we address the effect of the excitation energy dynamics on the photophysics of PPV. The PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poisson distribution. We observe that the Poisson distribution of the segment lengths explains the photophysics of PPV better than the Gaussian distribution. A recently proposed version of an extended particle-in-a-box' model is used to calculate the exciton energies and the transition dipole moments of the chromophores, and a master equation to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Forster expression. The observed excitation population dynamics confirms the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The time scale of spectral shift and energy transfer for our model polymer, with realistic values of optical parameters, is in the range of 200-300 ps. We find that the excitation energy may not always migrate towards the longest chromophore segments in the polymer chain as the efficiency of energy transfer between chromophores depends on the separation distance between the two and their relative orientation.
Resumo:
Ultrasonic velocities at 10 MHz have been measured in two series of lithium, sodium, and potassium phosphomolybdate glasses with two fixed P2O5 concentrations. Elastic moduli, Poisson's ratio, and Debye temperature have been calculated. The composition dependence of most of the properties of lithium glasses exhibits a trend opposite to that of potassium glasses. Properties of sodium glasses lie between the other two alkali systems. Alkali oxide modification is suggested to be accompanied by ring reformation in lithium and sodium glasses. Ring size effects have been shown to account for all of the composition dependence.
Resumo:
In this article we plan to demonstrate the usefulness of `Gutzmer's formula' in the study of various problems related to the Segal-Bargmann transform. Gutzmer's formula is known in several contexts: compact Lie groups, symmetric spaces of compact and noncompact type, Heisenberg groups and Hermite expansions. We apply Gutzmer's formula to study holomorphic Sobolev spaces, local Peter-Weyl theorems, Paley-Wiener theorems and Poisson semigroups.
Resumo:
The Lewis (1968) invariant of the time-dependent harmonic oscillator is used to construct exact time-dependent, uniform density solutions of the collisionless Boltzmann equation. The spatially bound solutions are time-periodic.
Resumo:
A detailed characterization of interference power statistics in CDMA systems is of considerable practical and theoretical interest. Such a characterization for uplink inter-cell interference has been difficult because of transmit power control, randomness in the number of interfering mobile stations, and randomness in their locations. We develop a new method to model the uplink inter-cell interference power as a lognormal distribution, and show that it is an order of magnitude more accurate than the conventional Gaussian approximation even when the average number of mobile stations per cell is relatively large and even outperforms the moment-matched lognormal approximation considered in the literature. The proposed method determines the lognormal parameters by matching its moment generating function with a new approximation of the moment generating function for the inter-cell interference. The method is tractable and exploits the elegant spatial Poisson process theory. Using several numerical examples, the accuracy of the proposed method in modeling the probability distribution of inter-cell interference is verified for both small and large values of interference.
Resumo:
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order (n).The shallow shell theory (which is more accurate at higher frequencies)is used to model the cylinder. Initially, the in vacua shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high-and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter p, we find solutions for the limiting cases of small and large p. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases.Poisson's ratio v is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory (in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders(n). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We evaluate the commutator of the Gauss law constraints starting from the chirally gauged Wess-Zumino-Witten action. The calculations are done at tree level, i.e. by evaluating corresponding Poisson brackets. The results are compared with commutators obtained by others directly from the gauged fermionic theory, and with Faddeev's results based on cohomology.
Resumo:
We study the Segal-Bargmann transform on M(2). The range of this transform is characterized as a weighted Bergman space. In a similar fashion Poisson integrals are investigated. Using a Gutzmer's type formula we characterize the range as a class of functions extending holomorphically to an appropriate domain in the complexification of M(2). We also prove a Paley-Wiener theorem for the inverse Fourier transform.
Resumo:
A solution for the stresses and displacements in an radially infinite thick plate having a circular hole, one face of which resting on a smooth rigid bed and the other face subjected to axisymmetric normal loading is given. The solution is obtained in terms of Fourier-Bessel series and integral for the Love's stress function. Numerical results are presented for one particular ratio of thickness of plate to the hole radius and loading. It is also shown that the Poisson's ratio has a predominant effect on certain stresses and displacements. The solution would be useful in the stress analysis of bolted joints.Eine Lösung für die Spannungen und Verschiebungen in einer radial, unendlich ausgedehnten, dicken Platte mit einem kreisförmigen Loch, wobei eine Seite auf einer ebenen, starren Unterlage aufliegt, die andere Seite durch eine achsensymmetrische Vertikallast belastet ist, wird angegeben. Die Lösung wird in Form von Fourier-Bessel-Reihen und Integralen der Loveschen Spannungsfunktion angegeben. Numerische Ergebnisse werden für ein bestimmtes Verhältnis der Plattendicke zum Lochradius sowie zur Belastung angegeben. Es wird auch gezeigt, daß das Poisssonsche Verhältnis einen besonderen Einfluß auf bestimmte Spannungen und Verschiebungen hat. Die Lösung ist anwendbar für die Spannungsermittlung von Bolzenverbindungen.