964 resultados para Plasmid dnas
Resumo:
Rhodococcus equi is a facultative intracellular pathogen associated with bronchopneumonia, mesenteric lymphadenitis and enterocolitis in foals. Although R. equi is likely to be found in every horse-breeding farm, the clinical disease is unrecognized in most of them. Capsule components, equi factor, micolic acid and some products encoded by the large 85-90Kb plasmid were described as virulence factors. However, the pathogenesis of R. equi infections and the sensibility of foals are not completely understood. The aim of this study was evaluate the virulence of R. equi isolated from human, horses and environment for mices. Nine strains carrying the 85-90Kb plasmid isolated from foal clinical specimens, one from immunodeficient human patient and six plasmidless strains (four isolated from feces, one from pasture and one from immunodeficient human patient) were inoculated in cyclophosphamide immunossuppressed mice. The pathological changes and viability of R. equi cells in the liver of mice was verified after the 3rd, 6th an 10th day after inoculation for horse and environmental isolates and for R. equi isolates from human patients on the 1st, 3rd and 6th day. During the necropsy procedures, infiltrate of macrophages and pyogranulomatous lesions were detected after the sixth pos-inoculation day in the liver and spleen. In horse isolates, only plasmid positive strains were virulent, but in human isolates both strains (plasmid positive e plasmid negative) were virulent. Both groups of the immunossupressed mice inoculated with R. equi isolated from environment showed pathological changes. All R. equi strains were unable to kill non imunossuppressed mice.
Resumo:
Porcine circovirus 2 (PCV2) is generally associated with the porcine circovirosis syndrome, which is considered an important disease of swine and has potentially serious economic impact on the swine industry worldwide. This article describes the construction of a recombinant plasmid expressing the PCV2 structural protein and the evaluation of cellular and humoral immune responses produced by this recombinant vaccine in BALB/c mice. The vaccine candidate was obtained and analyzed in vivo, in an effort to determine the ability to induce a specific immune response in mice. DNA was extracted from a Brazilian PCV2 isolate and the gene coding for Cap protein was amplified by PCR and inserted into an expression plasmid. Groups of BALB/c mice were inoculated intra-muscularly and intradermally in a 15-day interval, with 100 µg and 50 µg of the vaccine construct, respectively. Another group was inoculated intramuscularly with 100 µg of empty plasmid, corresponding to the control group. Seroconversion and cellular response in BALB/c mice were compared and used for vaccine evaluation. Seroconversion was analyzed by ELISA. After a series of 3 immunizations the spleen cells of the immunized animals were used to perform lymphocyte proliferation assays. Seroconversion to PCV2 was detected by ELISA in the animals inoculated with the vaccine construct when compared with control groups. Lymphocyte proliferation assays showed a stronger cell proliferation in the inoculated animals compared with the control group. Thus, the vaccine candidate construct demonstrated to be able to induce both humoral and cellular responses in inoculated mice.
Resumo:
Pneumocystis has been isolated from a wide range of unrelated mammalian hosts, including humans, domestic and wild animals. It has been demonstrated that the genome of Pneumocystis of one host differs markedly from that of other hosts. Also, variation in the chromosome and DNA sequence of Pneumocystis within a single host species has been observed. Since information about the occurrence and nature of infections in wild animals is still limited, the objective of this work was to detect the presence of Pneumocystis sp. in lungs of bats from two states from Brazil by Nested-PCR amplification. The bats, captured in caves and in urban areas, were obtained from the Program of Rabies Control of two States in Brazil, Mato Grosso and Rio Grande do Sul, located in the Mid-Western and Southern regions of the country, respectively. DNAs were extracted from 102 lung tissues and screened for Pneumocystis by nested PCR at the mtLSU rRNA gene and small subunit of mitochondrial ribosomal RNA (mtSSU rRNA). Gene amplification was performed using the mtLSU rRNA, the primer set pAZ102H - pAZ102E and pAZ102X - pAZY, and the mtSSU rRNA primer set pAZ102 10FRI - pAZ102 10R-RI and pAZ102 13RI - pAZ102 14RI. The most frequent bats were Tadarida brasiliensis (25), Desmodus rotundus (20), and Nyctinomops laticaudatus (19). Pneumocystis was more prevalent in the species Nyctinomops laticaudatus (26.3% = 5/19), Tadarida brasiliensis (24% = 6/25), and Desmodus rotundus (20% = 4/20). Besides these species, Pneumocystis also was detected in lungs from Molossus molossus (1/11, 9.1%), Artibeus fimbriatus (1/1, 100%), Sturnira lilium (1/3, 33.3%), Myotis levis (2/3, 66.7%)and Diphylla ecaudata (1/2, 50%). PCR products which could indicate the presence of Pneumocystis (21.56%) were identified in DNA samples obtained from 8 out of 16 classified species from both states (5 bats were not identified). This is the first report of detection of Pneumocystis in bats from Brazil.
Resumo:
Escherichia coli isolates from 24 sick psittacine birds were serogrouped and investigated for the presence of genes encoding the following virulence factors: attaching and effacing (eae), enteropathogenic E. coli EAF plasmid (EAF), pili associated with pyelonephritis (pap), S fimbriae (sfa), afimbrial adhesin (afa), capsule K1 (neu), curli (crl, csgA), temperature-sensitive hemagglutinin (tsh), enteroaggregative heat-stable enterotoxin-1 (astA), heat-stable enterotoxin -1 heat labile (LT) and heat stable (STa and STb) enterotoxins, Shiga-like toxins (stx1 and stx2), cytotoxic necrotizing factor 1 (cnf1), haemolysin (hly), aerobactin production (iuc) and serum resistance (iss). The results showed that the isolates belonged to 12 serogroups: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 and O166. The virulence genes found were: crl in all isolates, pap in 10 isolates, iss in seven isolates, csgA in five isolates, iuc and tsh in three isolates and eae in two isolates. The combination of virulence genes revealed 11 different genotypic patterns. All strains were negative for genes encoding for EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 and stx2. Our findings showed that some E. coli isolated from psittacine birds present the same virulence factors as avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC) and Enteropathogenic E. coli (EPEC) pathotypes.
Resumo:
Torque teno sus virus (TTSuV) infection is present in pig herds worldwide. It has been demonstrated that TTSuV might increase the severity of other important viral diseases with economic and public health impacts. At present, there is no information on the age distribution of pigs infected with TTSuV in Brazilian herds. This study evaluated the frequency of TTSuV infection in pigs at different stages of production. Fecal samples (n=190) from pigs at 1 to 24 weeks of age and from breeders at 6 farrow-to-weaning (up to 8 weeks of age) and 9 grower-to-finish (9 weeks of age onwards) farms in the western region of Paraná state, Brazil, were evaluated by PCR. Fragments of the 5' UTRs of TTSuV1 and/or TTSuVk2 DNAs were identified in 126 (66.3%) of the fecal samples. Significant differences were found with the percentages of positive samples for TTSuV1, TTSuVk2, and mixed infections by both genera between and within the different pig production stages. Fecal samples from the grower-to-finish farms had TTSuV detection rates (90.1%; 64/71) that were significantly (p<0.05) higher than those from the farrow-to-weaning farms (52.1%; 62/119). TTSuV detection was significantly (p<0.05) more frequent in finisher pigs than in the animals from the other stages. The UTR nucleotide sequences in this study presented higher similarities to strains from Norway (96%, TTSuV1), and Argentina and China (97.1%, TTSuVk2). These results suggest that TTSuV infection has spread to pigs of all production stages and that the viral infection rate increases with the age of the animals. In the western region of Paraná state, Brazil, TTSuV1 and TTSuVk2-induced infections were more frequently observed in suckling piglets and finisher pigs, respectively. Phylogenetic analysis pointed out the possibility of different strains of TTSuV1 and TTSuVk2 circulating in pig herds of Brazil.
Resumo:
The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.
Resumo:
The stability of penicillin-binding protein 3 (PBP3), a cell septum synthesizing protein, was analyzed at different incubation temperatures in three Escherichia coli K12 strains carrying a PBP3-overproducing plasmid. The stability of PBP3 was significantly reduced in stationary phase cells shifted to 42°C for 4 h, compared to samples incubated at 28 or 37°C. The half-life of PBP3 in the C600 strain was 60 min at 42°C, while samples incubated at 28 or 37°C had PBP3 half-lives greater than 4 h. Analysis of the PBP3 content in mutants deficient in rpoS (coding for the stationary phase sigma factor, sigmaS) and rpoH (coding for the heat shock sigma factor, sigma32) genes after shift to 42°C showed that stability of the protein was controlled by sigmaS but not by sigma32. These results suggest that control of the PBP3 levels in E. coli K12 is through a post-transcriptional mechanism regulated by the stationary phase regulon. We demonstrated that stability of PBP3 in E. coli K12 involves degradation of the protein. Moreover, we observed that incubation of cells at 42°C significantly reduces the stability of PBP3 in early stationary phase cells in a process controlled by sigmaS.
Resumo:
The inducible tetracycline resistance determinant isolated from Proteus mirabilis cloned into the plasmid pACYC177 was mutagenized by insertion of a mini-Mu-lac phage in order to define the regions in the cloned sequences encoding the structural and regulatory proteins. Three different types of mutants were obtained: one lost the resistance phenotype and became Lac+; another expressed the resistance at lower levels and constitutively; the third was still dependent on induction but showed a lower minimal inhibitory concentration. The mutant phenotypes and the locations of the insertions indicate that the determinant is composed of a repressor gene and a structural gene which are not transcribed divergently as are other known tetracycline determinants isolated from Gram-negative bacteria
Resumo:
Cytotoxin production was studied in 60 Serratia marcescens strains isolated from hospitalized patients. Association of cytotoxic activity with serotype, source of isolation and presence of plasmids was also evaluated. Thirteen of the 60 S. marcescens strains produced a cytotoxic effect on Vero cells. These strains were isolated from distinct clinical sources and classified into seven different serotypes (O1:H7; O4:NM; O10:NT; O19:NM; O6,14:H4; O6,14:NM and O6,14:H1). No relationship was observed between cytotoxic activity and clinical source or serotypes of the strains. Plasmids from five cytotoxin-producing S. marcescens strains were transferred to E. coli K12/711. The transconjugants did not exhibit cytotoxicity, indicating that the cytotoxic effect is not plasmid-mediated among these strains. Although a cytotoxic activity was demonstrated in filtrates of some S. marcescens strains, further studies should be performed to assess the role of this toxin in pathogenesis
Resumo:
An expression plasmid (pCFA-1) carrying the cfaB gene that codes for the enterotoxigenic Escherichia coli (ETEC) fimbrial adhesin colonization factor antigen I (CFA/I) subunit was constructed and used to transform a derivative of the attenuated Salmonella typhimurium aroA vaccine strain SL3261 carrying an F'lacIq. Treatment of the transformed strain with isopropyl-ß-D-thiogalactopyranoside (IPTG) resulted in elevated in vitro expression of the CFA/I subunit. Although flagellar function and lipopolysaccharide (LPS) synthesis were similar in both the parental and the recombinant strains, spleen colonization was reduced in the recombinant strain. All BALB/c mice parenterally inoculated with the recombinant strain developed significant anti-CFA/I and anti-LPS serum antibody titers (P<0.05). Moreover, 2 of 5 mice orally inoculated with the engineered Salmonella strain developed anti-CFA/I intestinal IgA (P>0.05) while 4/5 of the same mice developed anti-LPS IgA (P<0.05). The results indicate that the vaccine strain elicited an antibody response against the bacterial host both after oral and intravenous immunization while the response against the CFA/I antigen was significant only after inoculation by the intravenous route
Resumo:
In the present study we evaluated different systems for the expression of mycobacterial antigen P36 secreted by Mycobacterium bovis. P36 was detected by Western blot using a specific antiserum. The P36 gene was initially expressed in E. coli, under the control of the T7 promoter, but severe proteolysis prevented its purification. We then tried to express P36 in M. smegmatis and insect cells. For M. smegmatis, we used three different plasmid vectors differing in copy number and in the presence of a promoter for expression of heterologous proteins. P36 was detected in the cell extract and culture supernatant in both expression systems and was recognized by sera from M. bovis-infected cattle. To compare the expression level and compartmentalization, the MPB70 antigen was also expressed. The highest production was reached in insect cell supernatants. In conclusion, M. smegmatis and especially the baculovirus expression system are good choices for the production of proteins from pathogenic mycobacteria for the development of mycobacterial vaccines and diagnostic reagents.
Resumo:
DNA-based immunization has initiated a new era of vaccine research. One of the main goals of gene vaccine development is the control of the levels of expression in vivo for efficient immunization. Modifying the vector to modulate expression or immunogenicity is of critical importance for the improvement of DNA vaccines. The most frequently used vectors for genetic immunization are plasmids. In this article, we review some of the main elements relevant to their design such as strong promoter/enhancer region, introns, genes encoding antigens of interest from the pathogen (how to choose and modify them), polyadenylation termination sequence, origin of replication for plasmid production in Escherichia coli, antibiotic resistance gene as selectable marker, convenient cloning sites, and the presence of immunostimulatory sequences (ISS) that can be added to the plasmid to enhance adjuvanticity and to activate the immune system. In this review, the specific modifications that can increase overall expression as well as the potential of DNA-based vaccination are also discussed.
Resumo:
DNA plasmids encoding foreign proteins may be used as immunogens by direct intramuscular injection alone, or with various adjuvants and excipients, or by delivery of DNA-coated gold particles to the epidermis through biolistic immunization. Antibody, helper T lymphocyte, and cytotoxic T lymphocyte (CTL) responses have been induced in laboratory and domesticated animals by these methods. In a number of animal models, immune responses induced by DNA vaccination have been shown to be protective against challenge with various infectious agents. Immunization by injection of plasmids encoding foreign proteins has been used successfully as a research tool. This review summarizes the types of DNA vaccine vectors in common use, the immune responses and protective responses that have been obtained in animal models, the safety considerations pertinent to the evaluation of DNA vaccines in humans and the very limited information that is available from early clinical studies.
Resumo:
Stimulation of the mammalian immune system by administration of plasmid DNA has been shown to be an important approach for vaccine development against several pathogens. In the present study we investigated the use of DNA vaccines to induce immune responses against an enteric bacterial pathogen, enterotoxigenic Escherichia coli (ETEC). Three plasmid vectors encoding colonization factor antigen I (CFA/I), an ETEC fimbrial adhesin, were constructed. Eukaryotic cells transfected with each of these plasmids expressed the heterologous antigen in different compartments: bound to the cytoplasmic membrane (pRECFA), accumulated in the cytoplasm (pPolyCFA) or secreted to the outside medium (pBLCFA). BALB/c mice were intramuscularly (im) inoculated with purified plasmid DNA and the systemic, cellular and secreted CFA/I-specific immune responses were analyzed. The results showed that all three DNA vaccine formulations could elicit CFA/I-specific immune responses. Moreover, cellular location of the plasmid-encoded CFA/I seems to have an important role in the induced immune response. Taken together, these results indicate that DNA vaccines also represent a promising approach against enteric bacterial pathogens.
Resumo:
Apoptosis is a well-known specific process of cell death that normally occurs in physiological situations such as tissue or organ development and involution. During tumor growth there is a balance between proliferation and cell death which involves apoptotic mechanisms. In the present study genomic DNAs from 120 breast tumor biopsies were analyzed by agarose gel electrophoresis and none of them presented the fragmentation pattern characteristic of the apoptosis process. However, 33% of the 105 breast cancer patients clearly showed the apoptotic pattern when DNA from blood cells was analyzed. None of the DNAs from healthy volunteer blood cells showed any trace of apoptosis. Since the breast cancer patients were not receiving chemo- or hormone therapy, the possible relationship between blood cortisol levels and the apoptotic pattern found in patient blood cells was investigated. Using a chemoluminescence immunodetection assay, similar cortisol levels were observed in breast cancer patient sera presenting or not apoptotic blood cells and in healthy volunteer sera. Analysis of the clinical data obtained from 60 of these patients showed that patients bearing tumors of smaller size (under 20 mm) were more susceptible to the apoptotic effect in blood cells. According to the Elston grade, it was observed that 7 of 12 patients with grade III tumors (58%) presented apoptotic peripheral blood cells, in contrast to 10 of 48 patients with grade I and grade II tumors. These observations may reflect the immunosuppression characteristic of some breast cancer patients, which may contribute to tumor growth. Therefore, further studies are necessary to elucidate the factor(s) involved in such massive blood cell death.