906 resultados para Plasma-materials interaction
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
We report the first systematic observations of relativistic self-phase-modulation (RSPM) due to the interaction of a high intensity laser pulse with plasma. The plasma was produced in front of a solid target by the prepulse of a 100 TW laser beam. RSPM was observed by monitoring the spectrum of the harmonics generated by the intense laser pulse during the interaction. The multipeaked broadened spectral structure produced by RSPM was studied in plasmas with different density scale lengths for laser interactions at intensities up to 3.0x1019 W cm(-2) (a=p(osc)/m(e)c=4.7). The results are compared with calculated spectra and agreement is obtained.
Resumo:
Nuclear activation has been observed in materials exposed to the ablated plasma generated from high intensity laser-solid interactions (at focused intensities up to 2x10(19) W/cm(2)) and is produced by protons having energies up to 30 MeV. The energy spectrum of the protons is determined from these activation measurements and is found to be consistent with other ion diagnostics. The possible development of this technique for
Resumo:
We have investigated the generation of high harmonics from the interaction of 150 fsec, 790 nm, and 395 nm laser pulses with solid targets. Experiments are presented that demonstrate a strong dependence of the conversion efficiency on the temporal pulse shape and the resulting density scale length (L/lambda) of the preformed plasma. The highest conversion efficiencies are achieved for short density scale lengths (L/lambda less than or equal to 0.4), which result from high contrast ratio pulse interactions. [S1063-651X(98)50211-5].
Resumo:
The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterized with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.
Characterization of laser plasmas for interaction studies: Progress in time-resolved density mapping
Resumo:
Time-resolved probe interferometry was used to obtain complete density mapping of laser produced plasmas. The plasma was produced by symmetrical irradiation of thin targets, to be used for short pulse delayed interaction experiments. The progress in the plasma characterization due to the use of a picosecond pulse probe is reported, and the relative merits of different target designs are also discussed. The two-dimensional density maps obtained appear to be in substantial agreement with two-dimensional hydrodynamic code predictions.
Resumo:
The process of second harmonic generation (SHG) in undercritical plasmas is studied. It is shown that filamentation and self-focusing of the laser beam in the plasma can break the plasma density symmetry and lead to SHG by free electrons. In turn, second harmonic emission may be used to investigate the plasma parameters and to diagnose the process of laser beam filamentation itself.
Resumo:
Spectra of forward emitted second harmonic light from laser interaction with filamentary plasmas have been experimentally studied. Rather regular modulations in the frequency domain have been observed into overall red-shifted spectra. The observed spectral features are consistent with self-phase-modulation of the intense laser light in growing filaments. A model accounts for this effect.
Resumo:
Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.
Resumo:
The interaction of a high-intensity laser pulse with a plasma density channel preformed in a gas jet target has been studied. At neutral densities below 3.0 X 10(19) cm(-3) a strong interaction between the pulse and the channel walls was observed, there was clear evidence of pulse confinement, and the laser irradiance was significantly increased compared to an interaction with neutral gas. At higher gas densities, however, the radial uniformity and length of the channel were both found to be adversely affected by refractive defocusing of the prepulse used to generate the channel.