946 resultados para Plants in winter


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present review identifies various constraints relating to poor adoption of ley-pastures in south-west Queensland, and suggests changes in research, development and extension efforts for improved adoption. The constraints include biophysical, economic and social constraints. In terms of biophysical constraints, first, shallower soil profiles with subsoil constraints (salt and sodicity), unpredictable rainfall, drier conditions with higher soil temperature and evaporative demand in summer, and frost and subzero temperature in winter, frequently result in a failure of established, or establishing, pastures. Second, there are limited options for legumes in a ley-pasture, with the legumes currently being mostly winter-active legumes such as lucerne and medics. Winter-active legumes are ineffective in improving soil conditions in a region with summer-dominant rainfall. Third, most grain growers are reluctant to include grasses in their ley-pasture mix, which can be uneconomical for various reasons, including nitrogen immobilisation, carryover of cereal diseases and depressed yields of the following cereal crops. Fourth, a severe depletion of soil water following perennial ley-pastures (grass + legumes or lucerne) can reduce the yields of subsequent crops for several seasons, and the practice of longer fallows to increase soil water storage may be uneconomical and damaging to the environment. Economic assessments of integrating medium- to long-term ley-pastures into cropping regions are generally less attractive because of reduced capital flow, increased capital investment, economic loss associated with establishment and termination phases of ley-pastures, and lost opportunities for cropping in a favourable season. Income from livestock on ley-pastures and soil productivity gains to subsequent crops in rotation may not be comparable to cropping when grain prices are high. However, the economic benefits of ley-pastures may be underestimated, because of unaccounted environmental benefits such as enhanced water use, and reduced soil erosion from summer-dominant rainfall, and therefore, this requires further investigation. In terms of social constraints, the risk of poor and unreliable establishment and persistence, uncertainties in economic and environmental benefits, the complicated process of changing from crop to ley-pastures and vice versa, and the additional labour and management requirements of livestock, present growers socially unattractive and complex decision-making processes for considering adoption of an existing medium- to long-term ley-pasture technology. It is essential that research, development and extension efforts should consider that new ley-pasture options, such as incorporation of a short-term summer forage legume, need to be less risky in establishment, productive in a region with prevailing biophysical constraints, economically viable, less complex and highly flexible in the change-over processes, and socially attractive to growers for adoption in south-west Queensland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to the root-lesion nematode Pratylenchus thornei was sought in wheat from the West Asia and North Africa (WANA) region in the Watkins Collection (148 bread and 139 durum wheat accessions) and the McIntosh Collection (59 bread and 43 durum wheat accessions). It was considered that landraces from this region, encompassing the centres of origin of wheat and where P. thornei also occurs, could be valuable sources of resistance for use in wheat breeding. Resistance was determined by number of P. thornei/kg soil after the growth of the plants in replicated glasshouse experiments. On average, durum accessions produced significantly lower numbers of P. thornei than bread wheat accessions in both the Watkins and McIntosh Collections. Selected accessions with low P. thornei numbers were re-tested and 13 bread wheat and 10 durum accessions were identified with nematode numbers not significantly different from GS50a, a partially resistant bread wheat line used as a reference standard. These resistant accessions, which originated in Iran, Iraq, Syria, Egypt, Sudan, Morocco, and Tunisia, represent a resource of resistance genes in the primary wheat gene pool, which could be used in Australian wheat breeding programs to reduce the economic loss from P. thornei.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

South African citrus thrips (Scirtothrips aurantii) established adventitiously in Australia. Although it is a major horticultural pest in Africa, it is now advocated as a possible biological control agent against Bryophyllum delagoense Eckl. & Zeyh. (Crassulaceae). To evaluate the biocontrol potential of S. aurantii a two year field study was conducted on the western Darling Downs of southern Queensland. Imidacloprid insecticide was applied to two quadrats at each of 18 field sites to assess, in the absence of S. aurantii, the persistence of individual plants and to quantify propagule production and recruitment by this declared weed. A third quadrat was left, as a control, to be infested naturally by S. aurantii. When released from herbivory by thrips in the field, plants grew significantly more, flowered more, and were significantly more fecund than plants in the quadrats with S. aurantii. Increases in growth and fecundity translated into significantly increased plant numbers but not increased recruitment. Recruitment even declined in experimental quadrats, through the indirect effects of releasing plants from herbivory. Field sampling also revealed that S. aurantii may be sensitive to seasonal climatic fluctuations. These and other local climatic influences may limit the biological control potential of the insect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mikania micrantha, Kunth. H.B.K (Asteraceae) or mile-a-minute is a weed of Neotropical origin in 17 Pacific Island countries. It is becoming increasingly regarded as an invasive weed in Papua New Guinea and is now the focus of an Australian Government-funded biological control program. As part of the program, growth rates, distribution and physical and socia-economic impacts were studied to obtain baseline data and to assist with the field release of biological control agents. Through public awareness campaigns and dedicated surveys, mikania has been reported in most lowland provinces. It is particularly widespread in East New Britain and West New Britain Province. In field trials, mikania grew more than 1 metre per month in open sunny areas but slightly slower when growing under cocoa. The weed invades a wide range of land types, impacting on plantations and food gardens, smothering pawpaw, young cocoa, banana, taro, young oil palms and ornamental plants. In socia-economic surveys, mikania was found to have severe impacts on crop production and income generated through reduced yields and high weeding costs. These studies suggest that there would be substantial benefits to the community if biological control of mikania is successful.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dairy farms located in the subtropical cereal belt of Australia rely on winter and summer cereal crops, rather than pastures, for their forage base. Crops are mostly established in tilled seedbeds and the system is vulnerable to fertility decline and water erosion, particularly over summer fallows. Field studies were conducted over 5 years on contrasting soil types, a Vertosol and Sodosol, in the 650-mm annual-rainfall zone to evaluate the benefits of a modified cropping program on forage productivity and the soil-resource base. Growing forage sorghum as a double-crop with oats increased total mean annual production over that of winter sole-crop systems by 40% and 100% on the Vertosol and Sodosol sites respectively. However, mean annual winter crop yield was halved and overall forage quality was lower. Ninety per cent of the variation in winter crop yield was attributable to fallow and in-crop rainfall. Replacing forage sorghum with the annual legume lablab reduced fertiliser nitrogen (N) requirements and increased forage N concentration, but reduced overall annual yield. Compared with sole-cropped oats, double-cropping reduced the risk of erosion by extending the duration of soil water deficits and increasing the time ground was under plant cover. When grown as a sole-crop, well fertilised forage sorghum achieved a mean annual cumulative yield of 9.64 and 6.05 t DM/ha on the Vertosol and Sodosol, respectively, being about twice that of sole-cropped oats. Forage sorghum established using zero-tillage practices and fertilised at 175 kg N/ha. crop achieved a significantly higher yield and forage N concentration than did the industry-standard forage sorghum (conventional tillage and 55 kg N/ha. crop) on the Vertosol but not on the Sodosol. On the Vertosol, mean annual yield increased from 5.65 to 9.64 t DM/ha (33 kg DM/kg N fertiliser applied above the base rate); the difference in the response between the two sites was attributed to soil type and fertiliser history. Changing both tillage practices and N-fertiliser rate had no affect on fallow water-storage efficiency but did improve fallow ground cover. When forage sorghum, grown as a sole crop, was replaced with lablab in 3 of the 5 years, overall forage N concentration increased significantly, and on the Vertosol, yield and soil nitrate-N reserves also increased significantly relative to industry-standard sorghum. All forage systems maintained or increased the concentration of soil nitrate-N (0-1.2-m soil layer) over the course of the study. Relative to sole-crop oats, alternative forage systems were generally beneficial to the concentration of surface-soil (0-0.1 m) organic carbon and systems that included sorghum showed most promise for increasing soil organic carbon concentration. We conclude that an emphasis on double-or summer sole-cropping rather than winter sole-cropping will advantage both farm productivity and the soil-resource base.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mikania micrantha or mile-a-minute is regarded as a major invasive weed in Papua New Guinea (PNG) and is now the target of a biological control program. As part of the program, distribution and physical and socioeconomic impacts of M. micrantha were studied to obtain baseline data and to assist with field release of biological control agents. Through public awareness campaigns and dedicated surveys, M. micrantha has been reported in all 15 lowland provinces. It is particularly widespread in East New Britain, as well as in West New Britain and New Ireland. A CLIMEX model suggests that M. micrantha has the potential to continue to spread throughout all lowland areas in PNG. The weed was found in a wide range of land uses, impacting on plantations and food gardens and smothering papaya, young cocoa, banana, taro, young oil palms, and ornamental plants. In socioeconomic surveys, M. micrantha was found to have severe impacts on crop production and income generated through reduced yields and high weeding costs, particularly in subsistence mixed cropping systems. About 89% of all respondents had M. micrantha on their land, and 71% of respondents had to weed monthly. Approximately 96% of respondents in subsistence mixed cropping systems used only physical means of control compared with 68% of respondents in other farming systems. About 45% of all respondents estimated that M. micrantha causes yield losses in excess of 30%. These studies suggest that there would be substantial benefits to landholders if biological control of M. micrantha were to be successful.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microfungi that cause disease or are associated with diseased plants in the wet tropics of northern Queensland are listed. A total of 206 host-pathogen combinations on 148 host species has been compiled from the results of plant disease surveys in the Wet Tropics World Heritage Area in 1992 and 1993, from herbarium records and from previously published host-pathogen combinations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stripe or yellow rust (YR) is a significant problem in wheat crops worldwide. The deployment of adult-plant resistance (APR) genes in wheat cultivars is considered a sustainable management strategy, as these genes confer partial resistance that is usually non-race specific. Screening for APR typically involves assessment of adult plants in the field, where expression may be influenced by environmental factors. We report a high-throughput screening method for YR APR that can be used to assess fixed lines or segregating populations grown under controlled environmental conditions (CEC). Inoculation of 3-week-old wheat plants from lines with known APR responses to YR, when grown under constant light and temperature, provided disease responses typical of adult plants. Two F-2 populations ('H45' x 'ST93' and 'Wyalkatchem' x 'ST93') segregating for APR were assessed under both CEC and field conditions. These populations showed similar variation in disease response and lines assessed in both environments attained similar rankings. Phenotypic screening using CEC and continuous light provides an opportunity to accelerate the development of new wheat cultivars with durable resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyanobacterial mass occurrences, also known as water blooms, have been associated with adverse health effects of both humans and animals. They can also be a burden to drinking water treatment facilities. Risk assessments of the blooms have generally focused on the cyanobacteria themselves and their toxins. However, heterotrophic bacteria thriving among cyanobacteria may also be responsible for many of the adverse health effects, but their role as the etiological agents of these health problems is poorly known. In addition, studies on the water purification efficiency of operating water treatment plants during cyanobacterial mass occurrences in their water sources are rare. In the present study, over 600 heterotrophic bacterial strains were isolated from natural freshwater, brackish water or from treated drinking water. The sampling sites were selected as having frequent cyanobacterial occurrences in the water bodies or in the water sources of the drinking water treatment plants. In addition, samples were taken from sites where cyanobacterial water blooms were surmised to have caused human health problems. The isolated strains represented bacteria from 57 different genera of the Gamma-, Alpha- or Betaproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Bacilli and Deinococci classes, based on their partial 16S rRNA sequences. Several isolates had no close relatives among previously isolated bacteria or cloned 16S rRNA genes of uncultivated bacteria. The results show that water blooms are associated with a diverse community of cultivable heterotrophic bacteria. Chosen subsets of the isolated strains were analysed for features such as their virulence gene content and possible effect on cyanobacterial growth. Of the putatively pathogenic haemolytic strains isolated in the study, the majority represented the genus Aeromonas. Therefore, the Aeromonas spp. strains isolated from water samples associated with adverse health effects were screened for the virulence gene types encoding for enterotoxins (ast, alt and act/aerA/hlyA), flagellin subunits (flaA/flaB), lipase (lip/pla/lipH3/alp-1) and elastase (ahyB) by PCR. The majority (90%) of the Aeromonas strains included one or more of the six screened Aeromonas virulence gene types. The most common gene type was act, which was present in 77% of the strains. The fla, ahyB and lip genes were present in 30 37% of the strains. The prevalence of the virulence genes implies that the Aeromonas may be a factor in some of the cyanobacterial associated health problems. Of the 183 isolated bacterial strains that were studied for possible effects on cyanobacterial growth, the majority (60%) either enhanced or inhibited growth of cyanobacteria. In most cases, they enhanced the growth, which implies mutualistic interactions. The results indicate that the heterotrophic bacteria have a role in the rise and fall of the cyanobacterial water blooms. The genetic and phenotypic characteristics and the ability to degrade cyanobacterial hepatotoxins of 13 previously isolated Betaproteobacteria strains, were also studied. The strains originated from Finnish lakes with frequent cyanobacterial occurrence. Tested strains degraded microcystins -LR and -YR and nodularin. The strains could not be assigned to any described bacterial genus or species based on their genetic or phenotypic features. On the basis of their characteristics a new genus and species Paucibacter toxinivorans was proposed for them. The water purification efficiency of the drinking water treatment processes during cyanobacterial water bloom in water source was assessed at an operating surface water treatment plant. Large phytoplankton, cyanobacterial hepatotoxins, endotoxins and cultivable heterotrophic bacteria were efficiently reduced to low concentrations, often below the detection limits. In contrast, small planktonic cells, including also possible bacterial cells, regularly passed though the water treatment. The passing cells may contribute to biofilm formation within the water distribution system, and therefore lower the obtained drinking water quality. The bacterial strains of this study offer a rich source of isolated strains for examining interactions between cyanobacteria and the heterotrophic bacteria associated with them. The degraders of cyanobacterial hepatotoxins could perhaps be utilized to assist the removal of the hepatotoxins during water treatment, whereas inhibitors of cyanobacterial growth might be useful in controlling cyanobacterial water blooms. The putative pathogenicity of the strains suggests that the health risk assessment of the cyanobacterial blooms should also cover the heterotrophic bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2011, an outbreak of the quarantine-regulated pathogen Potato spindle tuber viroid (PSTVd) occurred in a commercial glasshouse-grown tomato crop in Queensland, Australia. Phylogenetic studies showed that the genotype of this isolate grouped in a cluster of PSTVd genotypes from tomato and Physalis peruviana, and exhibited an interesting mutation (U257→A) that has previously been linked to lethal symptom expression in tomato. Transmission studies showed that the viroid could be mechanically transmitted from crushed fruit sap, but not from undamaged fruits. A low rate of asymptomatic infection was determined for plants in the affected glasshouse, demonstrating the efficacy of using symptoms to detect PSTVd infections in tomato. No PSTVd infections were detected in solanaceous weeds located outside of the infected glasshouse, excluding them from playing a role in the viroid epidemiology. Monitoring and subsequent testing of new tomato crops grown in the facility demonstrated successful eradication of the pathogen. A trace-back analysis linked the outbreak of PSTVd to an infected imported tomato seed-lot, indicating that PSTVd is transmitted internationally through contaminated seed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mikania micrantha (Asteraceae) commonly known as mikania, is a major invasive alien plant (IAP) in the tropical humid agricultural and forest zones of the Asia-Pacific region. This fast-growing Neotropical vine is able to smother plants in agricultural ecosystems, agroforestry and natural habitats, reducing productivity and biodiversity. Fungal pathogens were first investigated for the classical biological control of this weed in 1996. This resulted in the selection and screening of the highly host-specific and damaging rust pathogen, Puccinia spegazzinii (Pucciniales). It was first released in India and China in 2005/6, although it is not believed to have established. Since then, it has been released successfully in Taiwan, Papua New Guinea (PNG), Fiji and most recently Vanuatu. The rust has established and is spreading rapidly after applying lessons learned from the first releases on the best rust pathotype and release strategy. In PNG, direct monitoring of vegetation change has demonstrated that the rust is having a significant impact on M. micrantha, with no unpredicted non-target impacts. Despite this, the authorities in many countries where mikania is a problem remain cautious about releasing the rust. In Western Samoa, introduction of the rust was not pursued because of a conflict of interest, and the perception that mikania suppresses even worse weeds. For some, ‘pathophobia’ is still a major obstacle. In Indonesia, where insects for weed CBC have been introduced, pathogens will currently not be considered. In other countries such as Bhutan and Myanmar, there are no baseline data on the presence and impact of IAPs and, with no history of CBC, no institutional framework for implementing this approach. Malaysia has a well-developed framework, but capacity needs to be built in the country. Overall, it remains critical to have champions at decision making levels. Hence, even with an effective ‘off-the-shelf’ agent available, implementation of mikania CBC still requires significant inputs tailored to the countries’ specific needs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient ways to re-establish pastures are needed on land that requires a rotation between pastures and crops. We conducted trials in southern inland Queensland with a range of tropical perennial grasses sown into wheat stubble that was modified in various ways. Differing seedbed preparations involved cultivation or herbicide sprays, with or without fertilizer at sowing. Seed was broadcast and sowing time ranged from spring through to autumn on 3 different soil types. Seed quality and post-sowing rainfall were major determinants of the density of sown grass plants in the first year. Light cultivation sometimes enhanced establishment compared with herbicide spraying of standing stubble, most often on harder-setting soils. A nitrogen + phosphorus mixed fertilizer rarely produced any improvement in sown grass establishment and sometimes increased weed competition. The effects were similar for all types of grass seed from hairy fascicles to large, smooth panicoid seeds and minute Eragrostis seeds. There was a strong inverse relationship between the initial density of sown grass established and the level of weed competition.