942 resultados para Plants, Sex in
Resumo:
The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.
Resumo:
Nickel isotope ratios were measured in ores, fly ash, slags and FeNi samples from two metallurgical plants located in the Goiás State, Brazil (Barro Alto, Niquelândia). This allowed investigating the mass-dependent fractionation of Ni isotopes during the Ni-laterite ore smelting and refining. Feeding material exhibits a large range of δ60Ni values (from 0.02 ± 0.10 ‰ to 0.20 ± 0.05 ‰, n=7), explained by the diversity of Ni-bearing phases, and the average of δ60Nifeeding materials was found equal to 0.08 ± 0.08‰ (2SD, n=7). Both δ60Ni values of fly ash (δ60Ni = 0.07 ± 0.07‰, n=10) and final FeNi produced (0.05 ± 0.02 ‰, n=2) were not significantly different from the feeding materials ones. These values are consistent with the very high production yield of the factories. However, smelting slags present the heaviest δ60Ni values of all the smelter samples, with δ60Ni ranging from 0.11 ± 0.05 ‰ to 0.27 ± 0.05 ‰ (n=8). Soils were also collected near and far from the Niquelândia metallurgical plant, to evaluate the potential of Ni isotopes for tracing the natural vs anthropogenic Ni in soils. The Ni isotopic composition of the non-impacted topsoils developed on ultramafic rocks ranges from -0.26 ± 0.09 ‰ to -0.04 ± 0.05 ‰ (n=20). On the contrary, the Ni isotopic composition of the non-ultramafic topsoils, collected close to the plant, exhibit a large variation of δ60Ni, ranging from -0.19 ± 0.13 ‰ up to 0.10 ± 0.05 ‰ (n=4). This slight but significant enrichment in heavy isotopes highlight the potential impact of smelting activity in the surrounding area, as well as the potential of Ni isotopes for discerning anthropogenic samples (heavier δ60Ni values) from natural ones (lighter δ60Ni values). However, given the global range of published δ60Ni values (from -1.03 to 2.5 ‰) and more particularly those associated to natural weathering of ultramafic rocks (from -0.61 to 0.32‰), the use of Ni isotopes for tracing environmental contamination from smelters will remain challenging.
Resumo:
Fusarium wilt of banana, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. A particularly virulent strain of the pathogen, tropical race 4 (TR4), presents an emerging threat to banana producing regions throughout the world. No commercially acceptable banana cultivar is resistant to TR4 and, as with all strains of the Fusarium wilt pathogen, there is no effective chemical control. Genetic resistance to TR4 has been observed in the diploid wild banana Musa acuminata subsp. malaccensis, which has consequently received attention as a potential source of Fusarium resistance genes. The aim of this research was to determine the pattern of inheritance of the resistance trait by screening plants for resistance to Foc subtropical race 4 (SR4) and TR4. Our results showed that the F1 progeny of self-fertilized malaccensis plants challenged in pot trials against SR4 (VCGs 0120, 0129, 01211) and TR4 (VCG 01213/16) segregated for resistance according to a Mendelian ratio of 3:1 which is consistent with a single dominant gene hypothesis.
Resumo:
Mode of access: Internet.
Resumo:
BACKGROUND AND AIMS: Silicon has been shown to enhance the resistance of plants to fungal and bacterial pathogens. Here, the effect of potassium silicate was assessed on two cotton (Gossypium hirsutum) cultivars subsequently inoculated with Fusarium oxysporum f. sp. vasinfectum (Fov). Sicot 189 is moderately resistant whilst Sicot F-1 is the second most resistant commercial cultivar presently available in Australia. METHODS: Transmission and light microscopy were used to compare cellular modifications in root cells after these different treatments. The accumulation of phenolic compounds and lignin was measured. KEY RESULTS: Cellular alterations including the deposition of electron-dense material, degradation of fungal hyphae and occlusion of endodermal cells were more rapidly induced and more intense in endodermal and vascular regions of Sicot F-1 plants supplied with potassium silicate followed by inoculation with Fov than in similarly treated Sicot 189 plants or in silicate-treated plants of either cultivar not inoculated with Fov. Significantly more phenolic compounds were present at 7 d post-infection (dpi) in root extracts of Sicot F-1 plants treated with potassium silicate followed by inoculation with Fov compared with plants from all other treatments. The lignin concentration at 3 dpi in root material from Sicot F-1 treated with potassium silicate and inoculated with Fov was significantly higher than that from water-treated and inoculated plants. CONCLUSIONS: This study demonstrates that silicon treatment can affect cellular defence responses in cotton roots subsequently inoculated with Fov, particularly in Sicot F-1, a cultivar with greater inherent resistance to this pathogen. This suggests that silicon may interact with or initiate defence pathways faster in this cultivar than in the less resistant cultivar.
Resumo:
In previous chapters of this volume, various authors describe the development of herbaceous legumes for pastures on clay soils in Queensland until about the 1980s. Emphasis is on the collection and evaluation of the genus Desmanthus, given its relatively recent addition to agriculture and considerable potential for providing useful pasture legumes for clay soils, particularly in the seasonally dry areas of northern Australia. Other genera are also discussed, including early assessments of herbaceous legumes that were later developed for clay soils (Clitoria, Macroptilium and Stylosanthes). This chapter provides a summary of the development of herbaceous legumes for clay soils in Queensland from these earlier assessments until present. Beef cattle farming is the principal agricultural enterprise in seasonally dry areas of northern Australia, including large areas of clay soils in Queensland. Sown and naturally occurring grasses provide the key feed resource, and the inclusion of sown legumes can significantly improve live-weight gain and reproductive performance per unit area. Queensland has been the centre of development for legumes for clay soils in tropical and subtropical areas of Australia, mostly through assessing and developing plants held in the Australian Tropical Forages Genetic Resource Collection (ATFGRC) (now a component of the Australia Pastures Genebank (APG)). The systematic appraisal of genetic material for clay soils was a focus of well-resourced government research up to the early to mid-1990s, but declined thereafter as sown pasture research teams were dismantled and funding to maintain the ATFGRC declined. Cultivar development is now conducted by small government, private enterprise and university research teams that collaborate where possible. In recent studies the use of experienced researcher knowledge and old plant evaluation sites has been particularly valuable for identifying potentially useful material. Cultivars for long- and short-term pastures on clay soils have been developed to the level of commercial seed production for Desmanthus (five cultivars from four species with two cultivars (one composite) in current use), Clitoria ternatea (one cultivar), Macroptilium bracteatum (two) and Stylosanthes seabrana (two). Other potential cultivars of these species are currently in various stages of development. Each species has different production niches depending on climate, clay soil type and grazing strategy. Adoption of these cultivars is occurring but has variously been impeded by limited promotion, mismatch of seed supply and demand, and difficulty establishing legumes in pastures of some key grass species. Recent renewed investment by the Australian Beef Industry has seen revived government research into pasture legumes in Queensland and rejuvenation of the APG.
Resumo:
Alopecurus aequalis Sobol. is a common grass weed, which has become increasingly troublesome to control in China wheat fields. One A. aequalis population, collected from Anhui Province China, was suspected to be resistant to fenoxaprop-P-ethyl and mesosulfuron-methyl. This study aimed to establish the cross-resistance pattern using the purified subpopulation and explore the potential targetsite and non-target-site based resistance mechanisms. Sequencing results showed that a single nucleotide change of ATT to AAT was present in acetyl-CoA carboxylase (ACCase) gene of the resistant (R) plants, resulting in an Ile2041Asn amino acid substitution. Besides, another single nucleotide change of CCC to CGC was present in acetolactate synthase (ALS) gene of the R plants, resulting in a Pro197Arg amino acid substitution. The homozygous resistant plants were isolated and the seeds were used in whole-plant herbicide bioassays. Compared with the susceptible (S) population, R population displayed high level resistance to fenoxaprop-P-ethyl and mesosulfuronmethyl. Cross resistance patterns showed that the R population was highly resistant to clodinafop-propargyl, moderately resistant to pyroxsulam and flucarbazoncsodium, lowly resistant to pinoxaden, and susceptible to tralkoxydim, sethoxydim, and isoproturon. The pretreatment of piperonyl butoxide reduced the 50% growth reduction (GR50) value of fenoxaprop-P-ethyl, suggesting that target-site resistance and non-target-site resistance mechanisms were both present in fenoxaprop- P-ethyl-resistance of A. aequalis. This is the first report of ACCase Ile2041Asn and ALS Pro197Arg mutation in A. aequalis.
Resumo:
The demand for natural sweeteners has been gaining more and more importance due to the great controversy associated with the use of some synthetic sweeteners as cyclamates, aspartame and acesulfame-K. The steviol glycosides (E 960) are a group of natural sweeteners of generalized use; these compounds are obtained from Stevia rebaudiana Bertoni, a sweet plant native from South America (Carocho et al., 2015). However, Stevia rebaudiana Bertoni may have other uses to be exploited, in particular due to its antioxidant capacity. This plant is already produced in Portugal but it is important to evaluate if the plant chemical composition is maintained regardless of culture conditions. Therefore, in this study, stevia samples were cultivated in Braganca (northeastern of Portugal) in a field trial with defined culture conditions. After harvesting, the plants were submitted to two different treatments: kept fresh by freezing (-20°C) and oven-dried (30°C). The antioxidant profile of the samples was studied through evaluation of free radicals scavenging activity, reducing power, phenolic compounds (HPLC-DAD-ESI/MS), tocopherols (HPLC-fluorescence) and free sugars (HPLC-RI). Significant differences were observed: while oven-dried samples showed the highest antioxidant activity and phenolic compounds concentration (mainly 5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid), the frozen fresh samples had the highest values of total tocopherols and total sugars. These results confirm that the plants grown in Bragança have excellent bioactive secondary metabolites responsible for the observed antioxidant capacity.
Resumo:
Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.
Resumo:
Background: Calluna vulgaris is one of the most important landscaping plants produced in Germany. Its enormous economic success is due to the prolonged flower attractiveness of mutants in flower morphology, the so-called bud-bloomers. In this study, we present the first genetic linkage map of C. vulgaris in which we mapped a locus of the economically highly desired trait " flower type" .Results: The map was constructed in JoinMap 4.1. using 535 AFLP markers from a single mapping population. A large fraction (40%) of markers showed distorted segregation. To test the effect of segregation distortion on linkage estimation, these markers were sorted regarding their segregation ratio and added in groups to the data set. The plausibility of group formation was evaluated by comparison of the " two-way pseudo-testcross" and the " integrated" mapping approach. Furthermore, regression mapping was compared to the multipoint-likelihood algorithm. The majority of maps constructed by different combinations of these methods consisted of eight linkage groups corresponding to the chromosome number of C. vulgaris.Conclusions: All maps confirmed the independent inheritance of the most important horticultural traits " flower type" , " flower colour" , and " leaf colour". An AFLP marker for the most important breeding target " flower type" was identified. The presented genetic map of C. vulgaris can now serve as a basis for further molecular marker selection and map-based cloning of the candidate gene encoding the unique flower architecture of C. vulgaris bud-bloomers. © 2013 Behrend et al.; licensee BioMed Central Ltd.
Resumo:
The work focuses on the screening of Polyalthia longifolia and Aloe vera for their phytoextractability of heavy metal in soil of the Niger Delta. 5kg of soil was polluted with 100 mg of Zn, Fe and Pb each replicated 9 times. Each set was separated into 3 subgroups. The subgroups were phytoextracted with Polyalthia longifolia and Aloe vera alongside a control (no phytoextraction) respectively. After 12 weeks, the concentration of Lead, Iron and Zinc in soils, roots and shoots was determined. Results showed that the two plants have phytoextraction ability with reductions in Zn, Fe, and Pb in the phytoextraction soil . Metal transfer factor was PB: Aloe vera (0.881) > P. longifolia (0.315); Zn: P. longifolia (0.614) > Aloe vera (0.606); Fe: Aloe vera (0.812) > P. longifolia (0.774). Translocation factors for the two plants were in the order: Zn: P. longifolia (0.79) > Aloe vera (0.36); Fe: P. longifolia (0.63) > Aloe vera (0.05); Pb: P. longifolia (0.57) > Aloe vera (0.23). Since the translocation factors were < 1, the plants can be classified as non- hyperaccumulators for these metals.
Resumo:
The herbaceous shrub Tetradenia riparia has been traditionally used to treat inflammatory and infectious diseases. Recently, a study showed that T. riparia essential oil (TrEO) obtained in summer has antileishmanial effects, although these results could be influenced by seasonal variation. This study evaluated the activity of the TrEO obtained in different seasons against Leishmania (Leishmania) amazonensis , in vitro and in vivo. The compounds in the TrEO were analysed by gas chromatography-mass spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO reduced intracellular amastigote infection, independently of season. The TrEO from plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO production did not change in samples of the TrEO from different seasons. The antileishmanial effect in vivo consisted of a reduction of the parasite load in the spleen. These results suggest that the TrEO has potential effects on L. (L.) amazonensis, consonant with its traditional use to treat parasitic diseases.
Resumo:
Introduction. Test of Everyday Attention for Children (TEA-Ch) has been validated in different countries demonstrating that it is an instrument with a correct balance between reliability and duration. Given the shortage of trustworthy instruments of evaluation in our language for infantile population we decide to explore the Spanish version of the TEA-Ch. Methods. We administered TEA-Ch (version A) to a sample control of 133 Spanish children from 6 to 11 years enrolled in school in the Community of Madrid. Four children were selected at random by course of Primary Education, distributing the sex of equivalent form. Descriptive analysis and comparison by ages and sex in each of the TEA-Ch's subtests were conducted to establish a profile of the sample. In order to analyze the effect of the age, subjects were grouped in six sub-samples: 6, 7, 8, 9, 10 and 11 years-old. Results. This first descriptive analysis demonstrates age exerted a significant effect on each measure, due to an important "jump" in children's performance between 6 and 7 years-old. The effect of sex was significant only in two visual attention measures (Sky Search & Map) and interaction age and sex exerted a significant effect only in the dual task (Score DT). Conclusions. The results suggest that the Spanish version of the TEA-Ch (A) might be a useful instrument to evaluate attentional processes in Spanish child population.
Resumo:
Even more so than in other arts, film has tried to draw an artificial but clear line between eroticism and pornography, nonetheless perpetuating moral judgments about movies marketed as “erotic”. The explicit and repeated portrayal of sex in such films would place them dangerously near the vortex of the pornographic, and thus, since they are not concerned with transcendental issues, they would require little or no critical attention. I will however try to argue, using Last Tango in Paris and Une liaison pornographique, that many of these “erotic” films conclude that a relationship based solely on sex (i.e. “pornographic”), which ignores the complexities of individual identity and the interpersonal is doomed to fail. Also, I would like to show how these films ultimately conceive of sex as something that goes beyond the merely physical and walks the grounds of such transcendental issues as despair, loneliness, death, or love.
Resumo:
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.