994 resultados para Planktonic Microalgae.
Resumo:
Planktonic foraminifers from Ocean Drilling Program Leg 182, Holes 1126B and 1126C, 1128B and 1128C, 1130A and 1130B, 1132B, and 1134A and 1134B confirm the neritic record that during the early Miocene the Great Australian Bight region was in a cool-temperate regime with abundant Globoturborotalita woodi. Warm marine environments started to develop in the later part of the early Miocene, and the region became warm temperate to subtropical in the early middle Miocene with abundant Globigerinoides, Orbulina, and Globorotalia, corresponding to global warming at the Miocene climatic optimum. Fluctuations between cool- and warm-temperate conditions prevailed during the late Miocene, as indicated by abundant Globoconella conoidea and Menardella spp. A major change in planktonic foraminiferal assemblages close to the Miocene/Pliocene boundary not only drove many Miocene species into extinction but also brought about such new species as Globorotalia crassaformis and Globoconella puncticulata. Warm-temperate environments continued into the early and mid-Pliocene before being replaced by cooler conditions, supporting numerous Globoconella inflata and Globigerina quinqueloba. Based on data from this study and published results from the Australia-New Zealand region, we established a local planktonic foraminifer zonation scheme for separating the southern Australian Neogene (SAN) into Zones SAN1 to SAN19 characterizing the Miocene and Zones SAN20 to SAN25 characterizing the Pliocene. The Neogene sections from the Great Australian Bight are bounded by hiatuses of ~0.5 to >3 m.y. in duration, although poor core recovery in some holes obscured a proper biostratigraphic resolution. A total of 15 hiatuses, numbered 1 to 15, were identified as synchronous events from the base of the Miocene to the lower part of the Pleistocene. We believe that these are local manifestations of major third-order boundaries at about (1) 23.8, (2) 22.3, (3) 20.5, (4) 18.7, (5) 16.4, (6) 14.8, (7) 13.5, (8) 11.5, (9) 9.3, (10) 7.0, (11) 6.0, (12) 4.5, (13) 3.5, (14) 2.5, and (15) 1.5 Ma, respectively. This hiatus-bounded Neogene succession samples regional transgressions and stages of southern Australia and reveals its stepwise evolutionary history.
Resumo:
D18O values of nine tropical-subtropical planktonic foraminiferal species with different preferential habitat depths collected from 62 core-top samples along an east-west transect across the tropical Atlantic/Caribbean were used to test the applicability of interspecific d18O gradients for reconstructions of tropical upper ocean stratification. In general, the d18O difference (Delta d18O) between intermediate- and shallow-dwelling species decreases, and Delta d18O between deep and intermediate dwellers increases with increasing thermocline depth towards the west. The statistical significance of regional differences in Delta d18O highlights Delta d18O between the intermediate dwellers (in particular Globorotalia scitula and Globorotalia tumida) and the shallow dweller Globigerinoides ruber pink, as well as Delta d18O between the deep dwellers Globorotalia crassaformis or Globorotalia truncatulinoides dextral and intermediate dwellers as most sensitive to changes in tropical Atlantic thermocline depth. Based on the observed regional variations in interspecific Delta d18O, we propose a multispecies stratification index "STRAtrop" = (d18Ointermediate - d18Oshallow) / (d18Odeep - d18Oshallow) for the tropical ocean. Statistically significant differences in STRAtrop values between the E-Atlantic and the Caribbean suggest that this index may be a useful tool to monitor variations in tropical upper ocean stratification in the geological record.
Resumo:
Modern planktonic foraminifera collected with a sediment trap and subfossil assemblages from surface sediments from Galway Mound in the Porcupine Seabight off southwestern Ireland, northeastern Atlantic, were studied to show recent assemblage variations. The sediment trap operated from April to August 2004 and covers the spring bloom and early summer conditions with sampling intervals of 8 days. Eleven different species were recorded. Glorotalia hirsuta, Turborotalita quinqueloba and Globigerinita glutinata appeared predominately in spring. Neogloboquadrina incompta, Globigerina bulloides and Globorotalia inflata were abundant in spring and summer. The highest foraminiferal tests flux occured in June. The faunal composition was similar to subfossil assemblages from surface sediments, but the species proportions were different. This was mainly affected by the subtropical G. hirsuta, which was frequent in 2004 and rare in surface sediment samples and in earlier plankton collections from the southern Porcupine Seabight that were performed during the 1990s. The weight of deposited foraminifera is mainly influenced by spring bloom as indicated by sea-surface chlorophyll-a data. The top three-ranked species, G. hirsuta, N. incompta and G. bulloides contributed 87 % to the foraminiferal carbonate flux at Galway Mound. Foraminiferal carbonate and shell flux as well as the shell size revealed variations, which are related to lunar periodicity. The data infer a lunar pacing of reproduction for the main species as well as for G. glutinata and G. inflata, which was not recorded before.
Resumo:
The surface water hydrography along the western Iberian margin, as part of the North Atlantic's eastern boundary upwelling system, consists of a complex, seasonally variable system of equatorward and poleward surface and subsurface currents and seasonal upwelling. Not much information exists to ascertain if the modern current and productivity patterns subsisted under glacial climate conditions, such as during marine isotope stage (MIS) 2, and how North Atlantic meltwater events, especially Heinrich events, affected them. To help answer these questions we are combining stable isotope records of surface to subsurface dwelling planktonic foraminifer species with sea surface temperature and export productivity data for four cores distributed along the western and southwestern Iberian margin (MD95-2040, MD95-2041, MD99-2336, and MD99-2339). The records reveals that with the exception of the Heinrich events and Greenland Stadial (GS) 4 hydrographic conditions along the western Iberian margin were not much different from the present. During the Last Glacial Maximum (LGM), subtropical surface and subsurface waters penetrated poleward to at least 40.6°N (site MD95-2040). Export productivity was, in general, high on the western margin during the LGM and low in the central Gulf of Cadiz, in agreement with the modern situation. During the Heinrich events and GS 4, on the other hand, productivity was high in the Gulf of Cadiz and suppressed in the upwelling regions along the western margin where a strong halocline inhibited upwelling. Heinrich event 1 had the strongest impact on the hydrography and productivity off Iberia and was the only period when subarctic surface waters were recorded in the central Gulf of Cadiz. South of Lisbon (39°N), the impact of the other Heinrich events was diminished, and not all of them led to a significant cooling in the surface waters. Thus, climatic impacts of Heinrich events highly varied with latitude and the prevailing hydrographic conditions in this region.
Resumo:
Mg/Ca in planktonic foraminifers carries two main signals: calcification temperature and postdepositional test dissolution. Shell dissolution thus distorts water temperature reconstructions made with Mg/Ca in foraminifers. This problem could be resolved by quantifying the impact of carbonate dissolution on Mg/Ca with an independent, temperature-insensitive deep-sea calcite dissolution proxy, such as the Globorotalia menardii fragmentation index (MFI). To test the validity of this approach, we measured Mg/Ca in the tests of several planktonic foraminifers and MFI in core tops collected over a wide geographic region of the tropical Pacific and covering a wide range of deep-sea calcite dissolution and seawater temperature. We confirm that Mg/Ca from different species have different susceptibility to temperature and dissolution. Mg/Ca in surface-dwelling Globigerina bulloides is controlled by calcification temperature and is largely unaffected by carbonate dissolution estimated from MFI. In contrast, Mg/Ca in deeper dwelling G. menardii is minimally sensitive to temperature and dominantly affected by dissolution. Mg/Ca in Neogloboquadrina dutertrei and Pulleniatina obliquiloculata are significantly affected by both temperature and dissolution, and MFI can be effectively used to correct temperature estimates from these species for calcite dissolution. Additional variables besides temperature and dissolution appear to control Mg/Ca in Globorotalia tumida, and their identification is a prerequisite for interpreting elemental shell composition in this species. Combining down-core measurements of Mg/Ca in multiple foraminifer species with MFI provides a powerful tool for reconstructing past changes in the upper water column temperature structure in the tropical Pacific.
Resumo:
An essentially complete Paleogene record was recovered on the Central and Southern Kerguelen plateaus (55°-59°S) in a calcareous biofacies. Recovery deteriorated in the middle Eocene and down to the upper Paleocene because of the presence of interbedded cherts and chalks. The stratigraphic distribution of about 70 taxa of planktonic foraminifers recovered at Sites 747-749 is reported in this paper. Faunas exhibited fairly high diversity (approximately 20-25 species) in the early Eocene, followed by a gradual reduction in diversity in the middle Eocene. A brief incursion of tropical keeled morozovellids occurred near the Paleocene/Eocene boundary, similar to that recorded on the Maud Rise (ODP Sites 689 and 690). The high-latitude Paleogene zonal scheme developed for ODP Leg 113 sites has been adopted (with minor modifications) for the lower Eocene-Oligocene part of the Kerguelen Plateau record. A representative Oligocene (polarity chronozones 7-13) and late Eocene-late middle Eocene (questionably polarity chronozones 16-18) magnetostratigraphic record has allowed the calibration of several biostratigraphic datum levels to the standard Global Polarity Time Scale (GPTS) and established their essential synchrony between low and high latitudes.
Resumo:
Variations in primary productivity (PP) have been reconstructed in eutrophic, mesotrophic and oligotrophic parts of the Arabian Sea over the past 135 000 years applying principal component analysis and transfer function to planktic foraminiferal assemblages. Temporal variation in paleoproductivity is most pronounced in the mesotrophic northern (NAST site) and oligotrophic eastern (EAST site) Arabian Sea, and comparatively weak in the western eutrophic GeoB 3011-1 site in the upwelling area off Oman. Higher PP during interglacials (250-320 g C/m**2 year) than during cold stages (210-270 g C/m**2 year) at GeoB 3011-1 could have been caused by a strengthened upwelling during intensified summer monsoons and increased wind velocities. At NAST, during interglacials, PP is estimated to exceed g C/m**2 year 1, and during glacials to be as low as 140-180 g C/m**2 year. These fluctuations may result from a (1) varying impact of filaments that are associated to the Oman coastal upwelling, and (2) from open-ocean upwelling associated to the Findlater Jet. At EAST, highest productivity of about 380 g C/m**2 year is documented for the transition from isotope stage 5 to 4. We suggest that during isotope stages 2, 4, 5.2, the transition 5/4, and the end of stage 6, deep mixing of surface waters was caused by moderate to strong winter monsoons, and induced an injection of nutrients into the euphotic layer leading to enhanced primary production. The deepening of the mixed layer during these intervals is confirmed by an increased concentration of deep-dwelling planktic foraminiferal species. A high-productivity event in stage 3, displayed by estimated PP values, and by planktic foraminifera and radiolaria flux and accumulation rate, likely resulted from a combination of intensified SW monsoons with moderate to strong NE monsoons. Differential response of Globigerina bulloides, Globigerinita glutinata and mixed layer species to the availability of food is suited to subdivide productivity regimes on a temporal and spatial scale.
Resumo:
Water exchange between the Black Sea and the Mediterranean Sea has been a major focus of the paleohydrography of the eastern Mediterranean. Glacial melt water released from the Black Sea is a potential factor in the formation of sapropel S1, an organic-rich sediment layer that accumulated during the Early Holocene. A high-resolution study done on sediments from the Marmara Sea, the gateway between the Mediterranean and the Black Sea, sheds light on the Holocene exchange processes. Past sea surface temperature and sea surface salinity (SSS) were derived from stable oxygen isotope ratios (delta18O) of foraminiferal calcite and alkenone unsaturation ratios (Uk'37). Heavy delta18O values and high SSS in the Marmara Sea suggest absence of low salinity water from the Black Sea during S1. The comparison with data from the Levantine Basin and southern Aegean Sea outlines gradients of freshening in the eastern Mediterranean Sea, whereby the major sources of freshwater were closer to the Levantine Basin. It is thus concluded that the Black Sea was not a major freshwater source contributing to formation of S1. Given the absence of a low salinity layer, the deposition of organic-rich sediments corresponding to S1 in the Marmara Sea is likely the result of the global transgression and the concomitant re-organization of biogeochemical cycles, leading to enhanced productivity as shown by Globigerina bulloides.
Resumo:
Detailed 14C AMS data and isotope based stratigraphies from high-resolution paleoceanographic records for the last 22 ka of cores from the upper continental slope off NE Brazil reveal sedimentation rates of up to 100 cm per 1000 yr. Variations in the sediment composition relate to changes in the input of terrigenous material. The sedimentation is controlled by sea level and by the climatic regime of the hinterland. Short-term changes in the tropical wind field may act as a climatic trigger. The zonality of the SE trades was probably increased and the monsoonal activity over Africa reduced during the Younger Dryas period.