795 resultados para Piedmont Technical College
Resumo:
Fish tracking is a valuable technique for the provision of detailed information on the behaviour patterns of individual fish especially during estuarine and riverine migration. 2. Tracking studies help in the provision of a comprehensive description of the variety offish behaviour patterns in response to factors such as water flow, obstructions and water quality. 3. There are advantages to be gained by complementing fish tracking studies with data collected from fish counters and vice versa. 4. An overall evaluation of NRA fish tracking projects is presented in the wider context of NRA strategic research objectives. 5. The requirement for future development of tracking equipment, improved data analysis techniques, better communication and more immediate report preparation is identified. 6. Individual project evaluation is given for NRA (or the appropriate Water Authority predecessor) tracking studies conducted on the Ribble estuary, the River Tamar, River Torridge, Rivers Test and Itchen, River Lodden, the Welsh River Dee, River Glaslyn, River Taff, River Tawe, River Tywi, River Usk, Rivers Avon and Stour and the River Frome. 7. An outline for future strategic research is provided which identifies particular areas for study:- i) Identification of environmental factors which control the entry of fish into rivers. ii) Improvement of the understanding of the relationship between water flow and upstream movement of salmonids. iii) Examination of the detailed movements and behaviour of fish in relation to obstructions. iv) Closer definition of water quality requirements for salmonid fish. v) Definition of habitat preferences of salmonids in rivers. vi) Subsidiary topics such as the movements of non-salmonid fish and the downstream migration of kelts and juvenile salmonids.
Resumo:
John Nathan Cobb (1868–1930) became the founding Director of the College of Fisheries, University of Washington, Seattle, in 1919 without the benefit of a college education. An inquisitive and ambitious man, he began his career in the newspaper business and was introduced to commercial fisheries when he joined the U.S. Fish Commission (USFC) in 1895 as a clerk, and he was soon promoted to a “Field Agent” in the Division of Statistics, Washington, D.C. During the next 17 years, Cobb surveyed commercial fisheries from Maine to Florida, Hawaii, the Pacific Northwest, and Alaska for the USFC and its successor, the U.S. Bureau of Fisheries. In 1913, he became editor of the prominent west coast trade magazine, Pacific Fisherman, of Seattle, Wash., where he became known as a leading expert on the fisheries of the Pacific Northwest. He soon joined the campaign, led by his employer, to establish the nation’s first fisheries school at the University of Washington. After a brief interlude (1917–1918) with the Alaska Packers Association in San Francisco, Calif., he was chosen as the School’s founding director in 1919. Reflecting his experience and mindset, as well as the University’s apparent initial desire, Cobb established the College of Fisheries primarily as a training ground for those interested in applied aspects of the commercial fishing industry. Cobb attracted sufficient students, was a vigorous spokesman for the College, and had ambitions plans for expansion of the school’s faculty and facilities. He became aware that the College was not held in high esteem by his faculty colleagues or by the University administration because of the school’s failure to emphasize scholastic achievement, and he attempted to correct this deficiency. Cobb became ill with heart problems in 1929 and died on 13 January 1930. The University soon thereafter dissolved the College and dismissed all but one of its faculty. A Department of Fisheries, in the College of Science, was then established in 1930 and was led by William Francis Thompson (1888–1965), who emphasized basic science and fishery biology. The latter format continues to the present in the Department’s successor, The School of Aquatic Fisheries and Science.
Resumo:
This study examined the technical efficiency in artisanal fisheries in Lagos State of Nigeria. The study employed a two stage random sampling procedure for the selection of 120 respondents. The analytical techniques involved descriptive statistics and estimation of technical efficiency following maximum likelihood estimation (MLE) procedure available in FRONTIER 4.1. The MLE result of the stochastic frontier production function showed that hired labour, cost of repair and capital items are critical factors that influences productivity of artisanal fishermen with the coefficient of hired labour being highly elastic. This implies that employing more labour will significantly increase the catch in the study area. The predicted farm efficiency with an average value of 0.92 showed that there is a marginal potential of about 8 percent to increase the catch, hence the income of the fishermen. The study further examined the factors that influence productivity of fishermen in the study area. Year of education, mode of operation and frequency of fishing have important implication on the technical efficiency of fishermen in the study area.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.
Resumo:
Washington depends on a healthy coastal and marine ecosystem to maintain a thriving economy and vibrant communities. These ecosystems support critical habitats for wildlife and a growing number of often competing ocean activities, such as fishing, transportation, aquaculture, recreation, and energy production. Planners, policy makers and resource managers are being challenged to sustainably balance ocean uses, and environmental conservation in a finite space and with limited information. This balancing act can be supported by spatial planning. Marine spatial planning (MSP) is a planning process that enables integrated, forward looking, and consistent decision making on the human uses of the oceans and coasts. It can improve marine resource management by planning for human uses in locations that reduce conflict, increase certainty, and support a balance among social, economic, and ecological benefits we receive from ocean resources. In March 2010, the Washington state legislature enacted a marine spatial planning law (RCW §43.372) to address resource use conflicts in Washington waters. In 2011, a report to the legislature and a workshop on human use data provided guidance for the marine spatial planning process. The report outlines a set of recommendations for the State to effectively undertake marine spatial planning and this work plan will support some of these recommendations, such as: federal integration, regional coordination, developing mechanisms to integrate scientific and technical expertise, developing data standards, and accessing and sharing spatial data. In 2012 the Governor amended the existing law to focus funding on mapping and ecosystem assessments for Washington’s Pacific coast and the legislature provided $2.1 million in funds to begin marine spatial planning off Washington’s coast. The funds are appropriated through the Washington Department of Natural Resources Marine Resources Stewardship Account with coordination among the State Ocean Caucus, the four Coastal Treaty Tribes, four coastal Marine Resource Committees and the newly formed stakeholder body, the Washington Coastal Marine Advisory Council.