996 resultados para Phylogenetic group
Resumo:
Members of the flightless genus Apterotheca Gebien (Coleoptera : Tenebrionidae) are mostly restricted to the high elevation rainforests of the Wet Tropics World Heritage Area of north-eastern Australia. This region has been recognised as an 'epicentre of evolution for low vagility animals'. The genus Apterotheca is the most diverse low vagility insect taxon known in this region. Forty-four species are included here in a revision of the genus. Three of these species were previously included in Apterotheca (A. antaroides (Pascoe), A. besti (Blackburn) and A. punctipennis Carter), four were previously included in other genera (A. australis (Kulzer), comb. nov. and A. punctifrons (Gebien), comb. nov. in Apterophenus Gebien, A. costata (Buck), comb. nov. in Caxtonana Buck and A. pustulosa (Carter), comb. nov. in Austropeus Carter) and 37 are new. The monotypic genera Austropeus Carter, syn. nov. and Caxtonana Buck, syn. nov. are proposed as new synonyms of Apterotheca. A lectotype for A. punctipennis and A. besti are designated. A key to the species of Apterotheca and a phylogenetic analysis based on the morphological features of adults, as well as a discussion of character evolution, are also included. Data presented here represent the framework for future studies on the determinants of the patterns of diversity found in the Wet Tropics.
Resumo:
The recent discovery of isotrichid-like ciliates occurring as endosymbionts in macropodid marsupials posed interesting questions in regard to both their phyletic origin (all previous records confined to eutherian mammals) and their morphological evolution (Australian forms possibly representing missing links between previously described genera). The SSU rRNA gene was sequenced for three species (Dasytricha dehorityi, D. dogieli, and Batricha tasmaniensis) and aligned against representatives of all major ciliate classes. The Australian species did not group with the other isotrichid species but instead formed an independent radiation. Discrepancies between recent global phylogenies of the phylum Ciliophora were examined by manipulation of the aligned sequence data set. Sources of conflict between these studies did not stem from differences in outgroup choice or phylogenetic reconstruction methods. Differences in the application of confidence limits and primary sequence alignment have probably resulted in the reporting of spurious associations which are not supported by more conservative confidence or alignment methodology. At present, the ciliate subphylum Intramacro-nucleata is an unresolved polytomy which may be due to deficiencies in the SSU rRNA gene sequence dataset or indicate that the ciliates radiated into their extant classes by rapid burst-like evolution. (C) 2001 academic Press.
Resumo:
Insect ganglia are often composed of fused segmental units or neuromeres. We estimated the evolution of the ventral nerve cord (VNC) in higher Diptera by comparing the patterns of neuromere fusion among 33 families of the Brachycera. Variation within families is uncommon, and VNC architecture does not appear to be influenced by body shape. The outgroup pattern, seen in lower Diptera, is fusion of neuromeres belonging to thoracic segments 1 and 2 (T1 and T2), and fusion of neuromeres derived from T3 and abdominal segment 1 (A1). In the abdomen, neuromeres A7-10 are fused into the terminal abdominal ganglion (TAG). Increased neuromere fusion is a feature of the Brachycera. No brachyceran shows less fusion than the outgroups. We established six pattern elements; (1) fusion of T1 and T2, (2) fusion of T3 and A1, (3) fusion of the T1/T2 andT3/A1 ganglia, (4) increase in the number of neuromeres comprising the TAG, (5) anteriorward fusion of abdominal neuromeres, and (6) the complete fusion of thoracic and abdominal neuromeres into a synganglion. States 1 and 2 are present in the outgroup lower Diptera, and state 3 in the Xylophagomorpha, Stratiomyomorpha, Tabanomorpha and Cyclorrhapha. State 4 is a feature of all Eremoneura. State 5 is present in Cyclorrhapha only, and state 6, fusion into a synganglion, has evolved at least 4 times in the Eremoneura. Synapomorphies are provided for the Cyclorrhapha and Muscoidea, and a grouping of three basal brachyceran infraorders Xylophagomorpha, Stratiomyomorpha and Tabanomorpha. The patterns of fusion suggest that VNC architecture has evolved irreversibly, in accordance with Dollo's law.
Resumo:
Mammals show extensive interspecific variation in the form of maternal care. Among ungulates, there is a dichotomy between species in which offspring follow the mother (following strategy) versus species in which offspring remain concealed (hiding strategy). Here we reveal that the same dichotomy exists among macropods (kangaroos, wallabies and allies). We test three traditional adaptive explanations and one new life history hypothesis. and find very similar patterns among both ungulates and macropods. The three traditional explanations that we tested were that a ''following'' strategy is associated with (1) open habitat, (2) large mothers, and (3) gregariousness. Our new life-history hypothesis is that a following strategy'' is associated with delayed weaning, and thus with the slow end of the slow-fast mammalian life-history continuum, because offspring devote resources to locomotion rather than rapid growth. Our comparative test strongly supports the habitat structure hypothesis and provides some support for this new delayed weaning hypothesis for both ungulates and macropods. We propose that sedentary young in closed habitats benefit energetically by having milk brought to them. In open habitats, predation pressure will select against hiding. Followers will suffer slower growth to independence. Taken together, therefore, our results provide the first quantitative evidence that macropods and ungulates are convergent with respect to interspecific variation in maternal care strategy. In both clades, differences between species in the form of parental care are due to a similar interaction between habitat, social behavior, and life history.
Resumo:
Cliff-nesting pale-winged starlings (Onychognathus nabouroup) gather on the cliff tops to perform Group Displays which include both aggressive and courtship elements: Hopping, Wing Stretching, Wing Drooping, Wing Flicking, Staring, Head Forward Threat and Butterfly Fluttering. These displays occur throughout the year, most frequently in the late afternoon. We suggest that this behaviour may be important in pair formation, and in establishing dominance relationships between birds breeding at the same site.
Resumo:
Image : To assess the potential for sucralfate administered rectally to reduce the risk of late rectal morbidity in patients undergoing nonconformal radiotherapy (RT) for carcinoma of the prostate and to study the variables potentially contributing to late rectal morbidity and particularly to explore the relationship between acute and late toxicity. Image : Eighty-six patients with localized prostate carcinoma were randomized in a double-blind, placebo-controlled study to a daily enema of 3 g of sucralfate in a 15-mL suspension or the same suspension without sucralfate. The enema began the first day of RT and was continued for 2 weeks after treatment completion. The primary end point of the study was acute Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) toxicity; however, the patients were followed for an additional 5 years on a 6-month basis. The evaluation included late RTOG/EORTC toxicity and a patient self-assessment questionnaire. Image : With a median follow-up of 5 years, the Kaplan-Meier probability of late Grade 2 RTOG/EORTC toxicity was 12% (95% confidence interval [CI] 2–22%) for placebo and 5% (95% CI 0–12%) for sucralfate (p = 0.26). The probability of late rectal bleeding was 59% (95% CI 45–73%) for placebo and 54% (95% CI 40–68%) for sucralfate. No statistically significant difference was found between the treatment arms for the peak incidence of any of the other patient self-assessment variables. Cox proportional hazards modeling indicated acute RTOG/EORTC toxicity of Grade 2 or greater was associated with a hazard ratio of 2.74 (95% CI 1.31–5.73) for the development of late toxicity of Grade 1 or greater. Substituting the patient self-assessment variables for acute RTOG/EORTC toxicity revealed that rectal pain of a moderate or severe grade during RT was the best predictor of the subsequent development of late toxicity, with a hazard ratio of 3.44 (95% CI 1.68–7). Image : The results of this study do not support the use of sucralfate administered rectally as a method for reducing the late toxicity of nonconformal RT for prostate cancer. There appears to be an association between the development of acute and subsequent late toxicity, although the nature of this association remains to be determined
Resumo:
Nine novel arsenite-oxidizing bacteria have been isolated from two different gold mine environments in Australia. Four of these organisms grow chemolithoautotrophically with oxygen as the terminal electron acceptor, arsenite as the electron donor, and carbon dioxide-bicarbonate as the sole carbon source. Five heterotrophic arsenite-oxidizing bacteria were also isolated, one of which was found to be both phylogenetically and physiologically identical to the previously described heterotrophic arsenite oxidizer misidentified as Alcaligenes faecalis. The results showed that this strain belongs to the genus Achromobacter. Phylogenetically, the arsenite-oxidizing bacteria fall within two separate subdivisions of the Proteobacteria. Interestingly, the chemolithoautotrophic arsenite oxidizers belong to the alpha-Proteobacteria, whereas the heterotrophic arsenite oxidizers belong to the beta-Proteobacteria.
Resumo:
Evidence suggesting polyphyly of the traditionally recognised tick genus Aponomma Neumann, 1899 is summarized. Continued recognition of this genus in its current concept leaves a polyphyletic genus Aponomma and a paraphyletic genus Amblyomma Koch, 1844. To improve the correlation between our understanding of phylogenetic relationships in metastriate ticks and their classification, a few changes in classification are proposed. The members of the 'indigenous Australian Aponomma' group (sensu Kaufman, 1972), A. auruginans Schulze, 1936, A. concolor Neumann, 1899, A. glebopalma Keirans, King & Sharrad, 1994, A. hydrosauri (Denny, 1843) and A. undatum (Fabricius, 1775), are transferred to Bothriocroton Keirans, King & Sharrad, 1994, which is raised to full generic rank. The remaining members of Aponomma are transferred to Amblyomma. Uncertainty remains on relationships of Bothriocroton to other metastriate lineages and on the systematic position of the two species formerly included in the 'primitive Aponomma' group, A. elaphense Price, 1959 and A. sphenodonti Dumbleton, 1943.
Resumo:
ITS2 sequences are used extensively in molecular taxonomy and population genetics of arthropods and other animals yet little is known about the molecular evolution of ITS2. We studied the secondary structure of ITS2 in species from each of the six main lineages of hard ticks (family Ixodidae). The ITS2 of these ticks varied in length from 679 bp in Ixodes scapularis to 1547 bp in Aponomma concolor. Nucleotide content varied also: the ITS2 of ticks from the Prostriata lineage (Ixodes spp.) had 46-49% GC whereas ITS2 sequences of ticks from the Metastriata lineage (all other hard ticks) had 61-62% GC. Despite variation in nucleotide sequence, the secondary structure of the ITS2 of all of these ticks apparently has five domains. Stems 1, 3, 4 and 5 of this secondary structure were obvious in all of the species studied. However, stem 2 was not always obvious despite the fact that it is flanked by highly conserved sequence motifs in the adjacent stems, stems 1 and 3. The ITS2 of hard ticks has apparently evolved mostly by increases and decreases in length of the nucleotide sequences, which caused increases, and decreases in the length of stems of the secondary structure. This is most obvious when stems of the secondary structures of the Prostriata (Ixodes spp.) are compared to those of the Metastriata (all other hard ticks). Increases in the size of the ITS2 may have been caused by replication slippage which generated large repeats, like those seen in Haemaphysalis humerosa and species from the Rhipicepalinae lineage, and the small repeats found in species from the other lineages of ticks.
Resumo:
Sequences of the rRNA nontranscribed spacer (NTS) were determined for six isolates of Perkinsus olseni, seven isolates of Perkinsus sp. from Anadara trapezia and one isolate of Perkinsus sp. from Austrovenus stutchburyi. These sequences were compared with previously published NTS sequences for R atlanticus, P. marinus and P. andrewsi. Consensus sequences for Perkinsus olseni, the Perkinsus isolates and P. atlanticus were approximately 98-99% similar to each other but only 65-79% similar to P. marinus and P. andrewsi sequences. Some individual P. olseni sequences were less similar to each other (97.4%) than they were to P. atlanticus sequences (97.8-98.2%), therefore NTS provides further evidence that P. atlanticus, P. olseni, Perkinsus sp. from Anadara trapezia and Perkinsus sp. from Austrovenus stutchburyi are conspecific. We propose that P. atlanticus be synonymised with P. olseni Lester & Davis, 1981 which has taxonomic priority, and that Perkinsus sp. from Anadara trapezia and Perkinsus sp. from Austrovenus stutchburyi belong to R olseni sensu lato as well. A phylogenetic analysis of SSU rDNA, incorporating recently published Perkinsus sequences, supports the placement of the Perkinsus species with Parvilucifera infectans within the Dinoflagellata.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
With over 80 000 described species, Brachycera represent one of the most diverse clades of organisms with a Mesozoic origin. Larvae of the majority of early lineages are detritivores or carnivores. However, Brachycera are ecologically innovative and they now employ a diverse range of feeding strategies. Brachyceran relationships have been the subject of numerous qualitative analyses using morphological characters. These analyses are often based on characters from one or a few character systems and general agreement on relationships has been elusive. In order to understand the evolution of basal brachyceran lineages, 101 discrete morphological characters were scored and compiled into a single data set. Terminals were scored at the family level, and the data set includes characters from larvae, pupae and adults, internal and external morphology, and male and female terminalia. The results show that all infraorders of Brachycera are monophyletic, but there is little evidence for relationships between the infraorders. Stratiomyomorpha, Tabanomorpha, and Xylophagomorpha together form the sister group to Muscomorpha. Xylophagomorpha and Tabanomorpha are sister groups. Within Muscomorpha, the paraphyletic Nemestrinoidea form the two most basal lineages. There is weak evidence for the monophyly of Asiloidea, and Hilarimorphidae appear to be more closely related to Eremoneura than other muscomorphs. Apsilocephalidae, Scenopinidae and Therevidae form a clade of Asiloidea. This phylogenetic evidence is consistent with the contemporaneous differentiation of the main brachyceran lineages in the early Jurassic. The first major radiation of Muscomorpha were asiloids and they may have diversified in response to the radiation of angiosperms in the early Cretaceous.