923 resultados para Phase-locked loop
Resumo:
This research was a step towards the comprehension of the nano-particles interaction with bubbles created during boiling. It was aimed at solving the controversies of whether the heat transfer is enhanced or deteriorated during the boiling of the nanofluid. Experiments were conducted in normal gravity and reduced gravity environments on-board the European Space Agency Parabolic Flight Program. The local modification of the thermo-physical properties of the fluid and moreover the modification experienced in the liquid microlayer under the growing vapour bubble were the dominant factors in explaining the mechanisms of the boiling behaviour of the nanofluid.
Resumo:
Social networking sites (SNSs), with their large numbers of users and large information base, seem to be perfect breeding grounds for exploiting the vulnerabilities of people, the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as “social engineering.” While technology-based security has been addressed by research and may be well understood, social engineering is more challenging to understand and manage, especially in new environments such as SNSs, owing to some factors of SNSs that reduce the ability of users to detect the attack and increase the ability of attackers to launch it. This work will contribute to the knowledge of social engineering by presenting the first two conceptual models of social engineering attacks in SNSs. Phase-based and source-based models are presented, along with an intensive and comprehensive overview of different aspects of social engineering threats in SNSs.
Resumo:
Aim: To examine if fasting affects serum bilirubin levels in clinical healthy males and females. Methods: We utilised retrospective data from phase 1 clinical trials where blood was collected in either a fed or fasting state at screening and pre-dosing time points and analysed for total bilirubin levels as per standard clinical procedures. Participants were clinically healthy males (n = 105) or females (n = 30) aged 18 to 48 inclusive who participated in a phase 1 clinical trial in 2012 or 2013. Results: We found a statistically significant increase in total serum bilirubin levels in fasting males as compared to non-fasting males. The fasting time correlated positively with increased bilirubin levels. The age of the healthy males did not correlate with their fasting bilirubin level. We found no correlation between fasting and bilirubin levels in clinically normal females. Conclusions: The recruitment and screening of volunteers for a clinical trial is a time-consuming and expensive process. This study clearly demonstrates that testing for serum bilirubin should be conducted on non-fasting male subjects. If fasting is required, then participants should not be excluded from a trial based on an elevated serum bilirubin that is deemed non-clinically significant.
Resumo:
In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.
Resumo:
Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). Results A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatmentrelated adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. Conclusion Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.
Resumo:
Purpose Patient-reported symptoms and health-related quality of life (QoL) benefits were investigated in a randomized, phase III trial of afatinib or cisplatin/pemetrexed. Patients and Methods Three hundred forty-five patients with advanced epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma were randomly assigned 2:1 to afatinib 40 mg per day or up to six cycles of cisplatin/pemetrexed. Lung cancer symptoms and health-related QoL were assessed every 21 days until progression using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Lung Cancer-13 questionnaires. Analyses of cough, dyspnea, and pain were preplanned, including percentage of patients who improved on therapy, time to deterioration of symptoms, and change in symptoms over time. Results Questionnaire compliance was high. Compared with chemotherapy, afatinib significantly delayed the time to deterioration for cough (hazard ratio [HR], 0.60; 95% CI, 0.41 to 0.87; P = .007) and dyspnea (HR, 0.68; 95% CI, 0.50 to 0.93; P = .015), but not pain (HR, 0.83; 95% CI, 0.62 to 1.10; P = .19). More patients on afatinib (64%) versus chemotherapy (50%) experienced improvements in dyspnea scores (P lt; .010). Differences in mean scores over time significantly favored afatinib over chemotherapy for cough (P lt; .001) and dyspnea (P = .001). Afatinib showed significantly better mean scores over time in global health status/QoL (P = .015) and physical (P = .001), role (P = .004), and cognitive (P lt; .007) functioning compared with chemotherapy. Fatigue and nausea were worse with chemotherapy, whereas diarrhea, dysphagia, and sore mouth were worse with afatinib (all P = .01). Conclusion In patients with lung adenocarcinoma with EGFR mutations, first-line afatinib was associated with better control of cough and dyspnea compared with chemotherapy, although diarrhea, dysphagia, and sore mouth were worse. Global health status/QoL was also improved over time with afatinib compared with chemotherapy.
Resumo:
The vast majority of current robot mapping and navigation systems require specific well-characterized sensors that may require human-supervised calibration and are applicable only in one type of environment. Furthermore, if a sensor degrades in performance, either through damage to itself or changes in environmental conditions, the effect on the mapping system is usually catastrophic. In contrast, the natural world presents robust, reasonably well-characterized solutions to these problems. Using simple movement behaviors and neural learning mechanisms, rats calibrate their sensors for mapping and navigation in an incredibly diverse range of environments and then go on to adapt to sensor damage and changes in the environment over the course of their lifetimes. In this paper, we introduce similar movement-based autonomous calibration techniques that calibrate place recognition and self-motion processes as well as methods for online multisensor weighting and fusion. We present calibration and mapping results from multiple robot platforms and multisensory configurations in an office building, university campus, and forest. With moderate assumptions and almost no prior knowledge of the robot, sensor suite, or environment, the methods enable the bio-inspired RatSLAM system to generate topologically correct maps in the majority of experiments.
Resumo:
Since the 1970s, the Uppsala stages model has been one of the dominant explanations of firm internationalization. The model's focus on internationalization as a firm's gradual and incremental process of increasing international involvement has attracted much debate, with one criticism being that it is unclear in explaining how the internationalization process first originates within a firm. In this paper, the Uppsala model is extended through the incorporation of a pre-internationalization phase to explore the antecedents of firm internationalization. Adopting the Uppsala model's theoretical underpinnings, this paper develops and operationalizes a pre-internationalization phase decision heuristic in the form of an ‘export readiness index'. Four constructs are proposed that drive and inhibit export commencement decision-making during a firm's preinternationalization phase: export stimuli, attitudinal/psychological commitment, resources and lateral rigidity. Through a survey of Australian exporting and non-exporting small-medium sized enterprises (SMEs), the Export Readiness Index (ERI) is developed through factor analysis and tested using logistic regression. Results of the study and their potential implications are discussed.
Resumo:
In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.
Resumo:
This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).
Resumo:
Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.
Resumo:
Long lived: Carbonyloxyl radicals (RCO2 .) are reactive intermediates that play key roles in initiating polymerization reactions. This reactivity also makes their direct observation difficult. For the first time a persistent organic RCO2 . radical is detected in the gas phase, its extraordinary longevity is attributed to the high barrier towards fragmentation owing to the endothermicity of the decarboxylation products. Grant Numbers ARC/DP0986738, ARC/DP120102922, ARC/DE120100467
Resumo:
The reactions of distonic 4-(N, N, N-trimethylammonium)-2-methylphenyl and 5-(N, N, N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O-2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O-2 to form \[M + O2](center dot+) and \[M + O-2 - OH](center dot+) ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N, N, N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5- H shift in the peroxyl radical forming a QOOH-type intermediate that subsequently eliminates (OH)-O-center dot to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O-2 reaction, thus serving as a plausible source of (OH)-O-center dot radicals in combustion environments. Grants: ARC/DP0986738, ARC/DP130100862
Resumo:
Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC16:0/18:1) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC18:1/16:0), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, \[PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating \[PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of \[PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry. Grant Number ARC/CE0561607, ARC/DP120102922