994 resultados para Ph D
Resumo:
In this thesis I apply paleomagnetic techniques to paleoseismological problems. I investigate the use of secular-variation magnetostratigraphy to date prehistoric earthquakes; I identify liquefaction remanent magnetization (LRM), and I quantify coseismic deformation within a fault zone by measuring the rotation of paleomagnetic vectors.
In Chapter 2 I construct a secular-variation reference curve for southern California. For this curve I measure three new well-constrained paleomagnetic directions: two from the Pallett Creek paleoseismological site at A.D. 1397-1480 and A.D. 1465-1495, and one from Panum Crater at A.D. 1325-1365. To these three directions I add the best nine data points from the Sternberg secular-variation curve, five data points from Champion, and one point from the A.D. 1480 eruption of Mt. St. Helens. I derive the error due to the non-dipole field that is added to these data by the geographical correction to southern California. Combining these yields a secular variation curve for southern California covering the period A.D. 670 to 1910, with the best coverage in the range A.D. 1064 to 1505.
In Chapter 3 I apply this curve to a problem in southern California. Two paleoseismological sites in the Salton trough of southern California have sediments deposited by prehistoric Lake Cahuilla. At the Salt Creek site I sampled sediments from three different lakes, and at the Indio site I sampled sediments from four different lakes. Based upon the coinciding paleomagnetic directions I correlate the oldest lake sampled at Salt Creek with the oldest lake sampled at Indio. Furthermore, the penultimate lake at Indio does not appear to be present at Salt Creek. Using the secular variation curve I can assign the lakes at Salt Creek to broad age ranges of A.D. 800 to 1100, A.D. 1100 to 1300, and A.D. 1300 to 1500. This example demonstrates the large uncertainties in the secular variation curve and the need to construct curves from a limited geographical area.
Chapter 4 demonstrates that seismically induced liquefaction can cause resetting of detrital remanent magnetization and acquisition of a liquefaction remanent magnetization (LRM). I sampled three different liquefaction features, a sandbody formed in the Elsinore fault zone, diapirs from sediments of Mono Lake, and a sandblow in these same sediments. In every case the liquefaction features showed stable magnetization despite substantial physical disruption. In addition, in the case of the sandblow and the sandbody, the intensity of the natural remanent magnetization increased by up to an order of magnitude.
In Chapter 5 I apply paleomagnetics to measuring the tectonic rotations in a 52 meter long transect across the San Andreas fault zone at the Pallett Creek paleoseismological site. This site has presented a significant problem because the brittle long-term average slip-rate across the fault is significantly less than the slip-rate from other nearby sites. I find sections adjacent to the fault with tectonic rotations of up to 30°. If interpreted as block rotations, the non-brittle offset was 14.0+2.8, -2.1 meters in the last three earthquakes and 8.5+1.0, -0.9 meters in the last two. Combined with the brittle offset in these events, the last three events all had about 6 meters of total fault offset, even though the intervals between them were markedly different.
In Appendix 1 I present a detailed description of my standard sampling and demagnetization procedure.
In Appendix 2 I present a detailed discussion of the study at Panum Crater that yielded the well-constrained paleomagnetic direction for use in developing secular variation curve in Chapter 2. In addition, from sampling two distinctly different clast types in a block-and-ash flow deposit from Panum Crater, I find that this flow had a complex emplacement and cooling history. Angular, glassy "lithic" blocks were emplaced at temperatures above 600° C. Some of these had cooled nearly completely, whereas others had cooled only to 450° C, when settling in the flow rotated the blocks slightly. The partially cooled blocks then finished cooling without further settling. Highly vesicular, breadcrusted pumiceous clasts had not yet cooled to 600° C at the time of these rotations, because they show a stable, well clustered, unidirectional magnetic vector.
Resumo:
Zintl phases, a subset of intermetallic compounds characterized by covalently-bonded "sub-structures," surrounded by highly electropositive cations, exhibit precisely the characteristics desired for thermoelectric applications. The requirement that Zintl compounds satisfy the valence of anions through the formation of covalent substructures leads to many unique, complex crystal structures. Such complexity often leads to exceptionally low lattice thermal conductivity due to the containment of heat in low velocity optical modes in the phonon dispersion. To date, excellent thermoelectric properties have been demonstrated in several Zintl compounds. However, compared with the large number of known Zintl phases, very few have been investigated as thermoelectric materials.
From this pool of uninvestigated compounds, we selected a class of Zintl antimonides that share a common structural motif: anionic moieties resembling infinite chains of linked MSb4 tetrahedra, where $M$ is a triel element. The compounds discussed in this thesis (
Resumo:
Long linear polymers that are end-functionalized with associative groups were studied as additives to hydrocarbon fluids to mitigate the fire hazard associated with the presence of mist in a crash scenario. These polymers were molecularly designed to overcome both the shear-degradation of long polymer chains in turbulent flows, and the chain collapse induced by the random placement of associative groups along polymer backbones. Architectures of associative groups on the polymer chain ends that were tested included clusters of self-associative carboxyl groups and pairs of hetero-complementary associative units.
Linear polymers with clusters of discrete numbers of carboxyl groups on their chain ends were investigated first: an innovative synthetic strategy was devised to achieve unprecedented backbone lengths and precise control of the number of carboxyl groups on chain ends (N). We found that a very narrow range of N allows the co-existence of sufficient end-association strength and polymer solubility in apolar media. Subsequent steady-flow rheological study on solution behavior of such soluble polymers in apolar media revealed that the end-association of very long chains in apolar media leads to the formation of flower-like micelles interconnected by bridging chains, which trap significant fraction of polymer chains into looped structures with low contribution to mist-control. The efficacy of very long 1,4-polybutadiene chains end-functionalized with clusters of four carboxyl groups as mist-control additives for jet fuel was further tested. In addition to being shear-resistant, the polymer was found capable of providing fire-protection to jet fuel at concentrations as low as 0.3wt%. We also found that this polymer has excellent solubility in jet fuel over a wide range of temperature (-30 to +70°C) and negligible interference with dewatering of jet fuel. It does not cause an adverse increase in viscosity at concentrations where mist-control efficacy exists.
Four pairs of hetero-complementary associative end-groups of varying strengths were subsequently investigated, in the hopes of achieving supramolecular aggregates with both mist-control ability and better utilization of polymer building blocks. Rheological study of solutions of the corresponding complementary associative polymer pairs in apolar media revealed the strength of complementary end-association required to achieve supramolecular aggregates capable of modulating rheological properties of the solution.
Both self-associating and complementary associating polymers have therefore been found to resist shear degradation. The successful strategy of building soluble, end-associative polymers with either self-associative or complementary associative groups will guide the next generation of mist-control technology.
Resumo:
In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.
For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.
To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.
The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.
The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.
Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.
We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.
Resumo:
Collector-type experiments have been conducted to investigate two different aspects of sputtering induced by keV ions. The first study looked for possible ejection mechanisms related to the primary charge state of the projectile. Targets of CsI and LiNbO_3 were bombarded with 48 keV Ar^(q+), and a Au target was bombarded with 60 keV Ar^(q+), for q = 4, 8, and 11. The collectors were analyzed using heavy-ion Rutherford backscattering spectroscopy to determine the differential angular sputtering yields; these and the corresponding total yields were examined for variations as a function of projectile charge state. For the Au target, no significant changes were seen, but for the insulating targets slight (~10%) enhancements were observed in the total yields as the projectile charge state was increased from 4+ to 11+.
In the second investigation, artificial ^(92)Mo/^(100)Mo targets were bombarded with 5 and 10 keV beams of Ar^+ and Xe^+ to study the isotopic fractionation of sputtered neutrals as a function of emission angle and projectile fluence. Using secondary ion mass spectroscopy to measure the isotope ratio on the collectors, material ejected into normal directions at low bombarding fluences (~ 10^(15) ions cm^(-2)) was found to be enriched in the light isotope by as much as ~70‰ compared to steady state. Similar results were found for secondary Mo ions sputtered by 14.5 keV O^-. For low-fluence 5 keV Xe^+ bombardment, the light-isotope enrichment at oblique angles was ~20‰ less than the corresponding enrichment in the normal direction. No angular dependence could be resolved for 5 keV Ar^+ projectiles at the lowest fluence. The above fractionation decreased to steady-state values after bombarding fluences of a few times 10^(16) ions cm^(-2) , with the angular dependence becoming more pronounced. The fractionation and total sputtering yield were found to be strongly correlated, indicating that the above effects may have been related to the presence of a modified target surface layer. The observed effects are consistent with other secondary ion measurements and multiple-interaction computer simulations, and are considerably larger than predicted by existing analytic theory.
Resumo:
The technique of variable-angle, electron energy-loss spectroscopy has been used to study the electronic spectroscopy of the diketene molecule. The experiment was performed using incident electron beam energies of 25 eV and 50 eV, and at scattering angles between 10° and 90°. The energy-loss region from 2 eV to 11 eV was examined. One spin-forbidden transition has been observed at 4.36 eV and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 7.84 eV. Based on the intensity variation of these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the first three transitions are tentatively assigned to an n → π* transition, a π - σ* (3s) Rydberg transition and a π → π* transition.
Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was investigated by the technique of electron energy-loss spectroscopy, using the impact energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a hydrogen-chloride α-elimination pathway. The difluoromethylene radical was produced from chlorodifluoromethane pyrolysis at 900°C and identified by its X^1 A_1 → A^1B_1 band at 5.04 eV.
Finally, a number of exploratory studies have been performed. The thermal decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) and temperatures ranging from 500°C to 1000°C. The complete decomposition of the diketene molecule into two ketene molecules was achieved at 900°C. The pyrolysis of trifluoromethyl iodide molecule at 1000°C produced an electron energy-loss spectrum with several iodine-atom, sharp peaks and only a small shoulder at 8.37 eV as a possible trifluoromethyl radical feature. The electron energy-loss spectrum of trichlorobromomethane at 900°C mainly showed features from bromine atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed partially at 900°C, but showed well-defined features from chlorine, carbon monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was investigated at 1000°C and produced a congested, electron energy-loss spectrum with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene features.
Resumo:
Secondary-ion mass spectrometry (SIMS), electron probe analysis (EPMA), analytical scanning electron microscopy (SEM) and infrared (IR) spectroscopy were used to determine the chemical composition and the mineralogy of sub-micrometer inclusions in cubic diamonds and in overgrowths (coats) on octahedral diamonds from Zaire, Botswana, and some unknown localities.
The inclusions are sub-micrometer in size. The typical diameter encountered during transmission electron microscope (TEM) examination was 0.1-0.5 µm. The micro-inclusions are sub-rounded and their shape is crystallographically controlled by the diamond. Normally they are not associated with cracks or dislocations and appear to be well isolated within the diamond matrix. The number density of inclusions is highly variable on any scale and may reach 10^(11) inclusions/cm^3 in the most densely populated zones. The total concentration of metal oxides in the diamonds varies between 20 and 1270 ppm (by weight).
SIMS analysis yields the average composition of about 100 inclusions contained in the sputtered volume. Comparison of analyses of different volumes of an individual diamond show roughly uniform composition (typically ±10% relative). The variation among the average compositions of different diamonds is somewhat greater (typically ±30%). Nevertheless, all diamonds exhibit similar characteristics, being rich in water, carbonate, SiO_2, and K_2O, and depleted in MgO. The composition of micro-inclusions in most diamonds vary within the following ranges: SiO_2, 30-53%; K_2O, 12-30%; CaO, 8-19%; FeO, 6-11%; Al_2O_3, 3-6%; MgO, 2-6%; TiO_2, 2-4%; Na_2O, 1-5%; P_2O_5, 1-4%; and Cl, 1-3%. In addition, BaO, 1-4%; SrO, 0.7-1.5%; La_2O_3, 0.1-0.3%; Ce_2O_3, 0.3-0.5%; smaller amounts of other rare-earth elements (REE), as well as Mn, Th, and U were also detected by instrumental neutron activation analysis (INAA). Mg/(Fe+Mg), 0.40-0.62 is low compared with other mantle derived phases; K/ AI ratios of 2-7 are very high, and the chondrite-normalized Ce/Eu ratios of 10-21 are also high, indicating extremely fractionated REE patterns.
SEM analyses indicate that individual inclusions within a single diamond are roughly of similar composition. The average composition of individual inclusions as measured with the SEM is similar to that measured by SIMS. Compositional variations revealed by the SEM are larger than those detected by SIMS and indicate a small variability in the composition of individual inclusions. No compositions of individual inclusions were determined that might correspond to mono-mineralic inclusions.
IR spectra of inclusion- bearing zones exhibit characteristic absorption due to: (1) pure diamonds, (2) nitrogen and hydrogen in the diamond matrix; and (3) mineral phases in the micro-inclusions. Nitrogen concentrations of 500-1100 ppm, typical of the micro-inclusion-bearing zones, are higher than the average nitrogen content of diamonds. Only type IaA centers were detected by IR. A yellow coloration may indicate small concentration of type IB centers.
The absorption due to the micro-inclusions in all diamonds produces similar spectra and indicates the presence of hydrated sheet silicates (most likely, Fe-rich clay minerals), carbonates (most likely calcite), and apatite. Small quantities of molecular CO_2 are also present in most diamonds. Water is probably associated with the silicates but the possibility of its presence as a fluid phase cannot be excluded. Characteristic lines of olivine, pyroxene and garnet were not detected and these phases cannot be significant components of the inclusions. Preliminary quantification of the IR data suggests that water and carbonate account for, on average, 20-40 wt% of the micro-inclusions.
The composition and mineralogy of the micro-inclusions are completely different from those of the more common, larger inclusions of the peridotitic or eclogitic assemblages. Their bulk composition resembles that of potassic magmas, such as kimberlites and lamproites, but is enriched in H_2O, CO_3, K_2O, and incompatible elements, and depleted in MgO.
It is suggested that the composition of the micro-inclusions represents a volatile-rich fluid or a melt trapped by the diamond during its growth. The high content of K, Na, P, and incompatible elements suggests that the trapped material found in the micro-inclusions may represent an effective metasomatizing agent. It may also be possible that fluids of similar composition are responsible for the extreme enrichment of incompatible elements documented in garnet and pyroxene inclusions in diamonds.
The origin of the fluid trapped in the micro-inclusions is still uncertain. It may have been formed by incipient melting of a highly metasomatized mantle rocks. More likely, it is the result of fractional crystallization of a potassic parental magma at depth. In either case, the micro-inclusions document the presence of highly potassic fluids or melts at depths corresponding to the diamond stability field in the upper mantle. The phases presently identified in the inclusions are believed to be the result of closed system reactions at lower pressures.
Resumo:
We report measurements of the proton form factors, G^p_E and G^p_M, extracted from elastic electron scattering in the range 1 ≤ Q^2 ≤ 3 (GeV/c)^2 with uncertainties of <15% in G^p_E and <3% in G^p_M. The results for G^p_E are somewhat larger than indicated by most theoretical parameterizations. The ratio of Pauli and Dirac form factors, Q^2(F^p_2/F^p_1), is lower in value and demonstrates less Q^2 dependence than these parameterizations have indicated. Comparisons are made to theoretical models, including those based on perturbative QCD, vector-meson dominance, QCD sum rules, and diquark constituents to the proton. A global extraction of the form factors, including previous elastic scattering measurements, is also presented.
Resumo:
A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.
In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.
In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.
One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.
The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.
Resumo:
This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. It is focused mainly on two fundamental questions: First, what is the general structure of the singularities and Killing-Cauchy horizons produced in the collisions of exactly plane-symmetric gravitational waves? Second, under what conditions will the collisions of almost-plane gravitational waves (waves with large but finite transverse sizes) produce singularities?
In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and that generic initial data for the colliding plane waves always produce "pure" spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction.
In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wavefronts; i.e., it must leave behind tails in the spacetime region through which it passes. Next, the occurrence of spacetime singularities in the collisions of almost-plane waves is investigated. It is proved that if two colliding, almost-plane gravitational waves are initially exactly plane-symmetric across a central region of sufficiently large but finite transverse dimensions, then their collision produces a spacetime singularity with the same local structure as in the exact-plane-wave collision. Finally, it is shown that a singularity still forms when the central regions are only approximately plane-symmetric initially. Stated more precisely, it is proved that if the colliding almost-plane waves are initially sufficiently close to being exactly plane-symmetric across a bounded central region of sufficiently large transverse dimensions, then their collision necessarily produces spacetime singularities. In this case, nothing is now known about the local and global structures of the singularities.
Resumo:
The decays of the ψ(3770) resonance to final states that do not contain charmed D mesons are measured for the first time. Using a sample of 9.3pb ^(-1) of e^+e^- annihilations at √s = 3.77 GeV, collected with the Mark III detector at SPEAR, we have measured the branching ratio for the decays ψ(3770) → J/ψπ^(+)π^(-) and γχ_j. These branching ratios together with the electronic widths of the ψ(3685) and ψ(3770) are used to determine the mixing angle between the 2^(3)S_1 and 1^(3)D_1 Charmonium states and are compared with a number of predictions. In addition, evidence is found for other non-DD hadronic final states, such as 3π, 4π, and 5π, as well as η2π, η4π, pp2π and pp3π.
Resumo:
Sources and effects of astrophysical gravitational radiation are explained briefly to motivate discussion of the Caltech 40 meter antenna, which employs laser interferometry to monitor proper distances between inertial test masses. Practical considerations in construction of the apparatus are described. Redesign of test mass systems has resulted in a reduction of noise from internal mass vibrations by up to two orders of magnitude at some frequencies. A laser frequency stabilization system was developed which corrects the frequency of an argon ion laser to a residual fluctuation level bounded by the spectral density √s_v(f) ≤ 60µHz/√Hz, at fluctuation frequencies near 1.2 kHz. These and other improvements have contributed to reducing the spectral density of equivalent gravitational wave strain noise to √s_h(f)≈10^(-19)/√ Hz at these frequencies.
Finally, observations made with the antenna in February and March of 1987 are described. Kilohertz-band gravitational waves produced by the remnant of the recent supernova are shown to be theoretically unlikely at the strength required for confident detection in this antenna (then operating at poorer sensitivity than that quoted above). A search for periodic waves in the recorded data, comprising Fourier analysis of four 105-second samples of the antenna strain signal, was used to place new upper limits on periodic gravitational radiation at frequencies between 305 Hz and 5 kHz. In particular, continuous waves of any polarization are ruled out above strain amplitudes of 1.2 x 10^(-18) R.M.S. for waves emanating from the direction of the supernova, and 6.2 x 10^(-19) R.M.S. for waves emanating from the galactic center, between 1.5 and 4 kilohertz. Between 305 Hz and 5kHz no strains greater than 1.2 x 10^(-17) R.M.S. were detected from either direction. Limitations of the analysis and potential improvements are discussed, as are prospects for future searches.
Resumo:
The termite hindgut microbial ecosystem functions like a miniature lignocellulose-metabolizing natural bioreactor, has significant implications to nutrient cycling in the terrestrial environment, and represents an array of microbial metabolic diversity. Deciphering the intricacies of this microbial community to obtain as complete a picture as possible of how it functions as a whole, requires a combination of various traditional and cutting-edge bioinformatic, molecular, physiological, and culturing approaches. Isolates from this ecosystem, including Treponema primitia str. ZAS-1 and ZAS-2 as well as T. azotonutricium str. ZAS-9, have been significant resources for better understanding the termite system. While not all functions predicted by the genomes of these three isolates are demonstrated in vitro, these isolates do have the capacity for several metabolisms unique to spirochetes and critical to the termite system’s reliance upon lignocellulose. In this thesis, work culturing, enriching for, and isolating diverse microorganisms from the termite hindgut is discussed. Additionally, strategies of members of the termite hindgut microbial community to defend against O2-stress and to generate acetate, the “biofuel” of the termite system, are proposed. In particular, catechol 2,3-dioxygenase and other meta-cleavage catabolic pathway genes are described in the “anaerobic” termite hindgut spirochetes T. primitia str. ZAS-1 and ZAS-2, and the first evidence for aromatic ring cleavage in the phylum (division) Spirochetes is also presented. These results suggest that the potential for O2-dependent, yet nonrespiratory, metabolisms of plant-derived aromatics should be re-evaluated in termite hindgut communities. Potential future work is also illustrated.
Resumo:
Physical and chemical properties of low-valent platinum dimers, namely [Pt_2(P_2O_5H_2)4]^(4-) and Pt_2(µ-dppm)_2Cl_2, have been investigated using a variety of structural and spectroscopic techniques.
Platinum(II) d^8-d^8 dimers have been shown to exhibit much thermal and photochemical reactivity. Chapter 2 describes studies aimed at elucidating the excited state reduction potenetial of [Pt_2(P_2O_5H_2)4]^(4-), Pt_2, in organic media. By conducting excited state electron transfer studies using derivatized pyridiniums and benzophenones, the excited state reduction potential has been estimated to be ~2 V. The Pt_2 complex undergoes partial oxidation to form Pt(II,III) linear chains. Chapter 3 describes the structural and spectroscopic techniques used to determine the translational symmetries of these [Pt_2(P_2O_5H_2)4]^(4-) (X = Cl, Br), Pt_2X, chains. Pt_2Br has been found to be intermediate between (AAB)_n and (AABCCB)_n, while, Pt_2Cl is of (AABCCB)_n translational symmetry. Investigations into the electronic transitions of Pt_2Cl and Pt_2Br were conducted using high pressure techniques and are presented in Chapter 4. The Pt_2X electronic spectrum exhibits bands attributable to the reduced Pt2 complex and the oxidized Pt_2X_2 complex [Pt_2(P_2O_5H_2)4]^(4-) along with an intervalence charge-tranfer band characteristic of a mixed-valence solid.
Photophysical investigations of a new luminescent chromophore, Pt_2(µ-dppm)_2Cl_2, a d^9-d^9 dimer, and its analogs are described in Chapter 5. The absorption band directly responsible for the observed emission is believed to be very weak and, as of yet, unobserved. Attempts to determine the spin multiplicty and approximate energy of this unobserved transition are described in Chapter 6. Excited-state energy transfer studies indicate that this absorption band is a triplet transition at -13,000 cm^(-1). Although, the Pt_2(µ-dppm)_2Cl_2 excited state is non-luminescent in fluid solution, it has been shown to undergo thermal electron transfer to tetracyanoethylene and photoinduced electron transfer to methylviologen. These experiments are presented in Chapter 7. Preliminary studies, described in Chapter 8, of non-bridged d^9-d^9 platinum(I) dimers have shown that [Pt_2(CNCH_3)_6]^(2+) serves as a versatile precursor in the synthesis of new d^8-d^8 A-frame complexes.
Resumo:
The search for reliable proxies of past deep ocean temperature and salinity has proved difficult, thereby limiting our ability to understand the coupling of ocean circulation and climate over glacial-interglacial timescales. Previous inferences of deep ocean temperature and salinity from sediment pore fluid oxygen isotopes and chlorinity indicate that the deep ocean density structure at the Last Glacial Maximum (LGM, approximately 20,000 years BP) was set by salinity, and that the density contrast between northern and southern sourced deep waters was markedly greater than in the modern ocean. High density stratification could help explain the marked contrast in carbon isotope distribution recorded in the LGM ocean relative to that we observe today, but what made the ocean's density structure so different at the LGM? How did it evolve from one state to another? Further, given the sparsity of the LGM temperature and salinity data set, what else can we learn by increasing the spatial density of proxy records?
We investigate the cause and feasibility of a highly and salinity stratified deep ocean at the LGM and we work to increase the amount of information we can glean about the past ocean from pore fluid profiles of oxygen isotopes and chloride. Using a coupled ocean--sea ice--ice shelf cavity model we test whether the deep ocean density structure at the LGM can be explained by ice--ocean interactions over the Antarctic continental shelves, and show that a large contribution of the LGM salinity stratification can be explained through lower ocean temperature. In order to extract the maximum information from pore fluid profiles of oxygen isotopes and chloride we evaluate several inverse methods for ill-posed problems and their ability to recover bottom water histories from sediment pore fluid profiles. We demonstrate that Bayesian Markov Chain Monte Carlo parameter estimation techniques enable us to robustly recover the full solution space of bottom water histories, not only at the LGM, but through the most recent deglaciation and the Holocene up to the present. Finally, we evaluate a non-destructive pore fluid sampling technique, Rhizon samplers, in comparison to traditional squeezing methods and show that despite their promise, Rhizons are unlikely to be a good sampling tool for pore fluid measurements of oxygen isotopes and chloride.