999 resultados para Pb Zircon Data
Resumo:
The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the end-Permian extinction and biotic recovery in south China. Guandao section is continuous from the Permian-Triassic boundary to the Upper Triassic.Conodonts enable broad delineation of stage and substage boundaries and calibration of foraminifer biostratigraphy as follows. Changhsingian- Griesbachian: first Hindeodus parvus, and first appearance of foraminifers Postcladella kalhori and Earlandia sp. Griesbachian-Dienerian: first Neospathodus dieneri, and last appearance of foraminifer P. grandis. Dienerian-Smithian: first Novispathodus waageni and late Dienerian first appearance of foraminifer Hoyenella ex gr. sinensis. Smithian-Spathian: first Nv? crassatus and last appearance of foraminifers Arenovidalina n. sp. and Glomospirella cf. vulgaris. Spathian-Aegean: first Chiosella timorensis and first appearance of foraminifer Meandrospira dinarica. Aegean-Bithynian: first Nicoraella germanica and first appearance of foraminifer Pilammina densa. Bithynian-Pelsonian: after last Neogondolella regalis, prior to first Paragondolella bulgarica and first appearance of foraminifer Aulotortus eotriasicus. Pelsonian-Illyrian: first Pg. excelsa and last appearance of foraminifers Meandrospira ? deformata and Pilamminella grandis. Illyrian-Fassanian: first Budurovignathus truempyi, and first appearance of foraminifers Abriolina mediterranea and Paleolituonella meridionalis. Fassanian-Longobardian: first Bv. mungoensis and last appearance of foraminifer A. mediterranea. Longobardian-Cordevolian: first Quadralella polygnathiformis and last appearance of foraminifers Turriglomina mesotriasica and Endotriadella wirzi. The section contains primary magnetic signature with frequent reversals occurring around the Permian-Triassic, Olenekian-Anisian, and Anisian-Ladinian boundaries. Predominantly normal polarity occurs in the lower Smithian, Bithynian, and Longobardian-Cordevolian. Predominantly reversed polarity occurs in the upper Griesbachian, Induan-Olenekian, Pelsonian and lower Illyrian. Reversals match well with the GPTS. Large amplitude carbon isotope excursions, attaining values as low as -2.9 per mil d13C and high as +5.7 per mil d13C, characterize the Lower Triassic and basal Anisian. Values stabilize around +2 per mil d13C through the Anisian to Carnian. Similar signatures have been reported globally. Magnetic susceptibility and synthetic gamma ray logs show large fluctuations in the Lower Triassic and an overall decline in magnitude of fluctuation through the Middle and Upper Triassic. The largest spikes in magnetic susceptibility and gamma ray, indicating greater terrestrial lithogenic flux, correspond to positive d13C excursions. Several volcanic ash horizons occur in the Lower Triassic and Olenekian-Anisian boundary. High resolution U-Pb analysis of zircons provide a robust age of 247.2 Ma for the Olenekian-Anisian boundary.
Resumo:
New Pb, Sr, and Nd isotope data are presented for 64 samples from the six backarc sites drilled during Leg 135. Systematic changes in Pb and Sr compositions illustrate significant isotopic variations between and within sites as well as provide two key pieces of information. First, a recent influx of asthenosphere with Indian Ocean mantle affinities has occurred and has successfully displaced older "Pacific" asthenosphere from the mantle underlying the backarc region. Second, clear evidence exists for mixing between these two asthenospheric end-members and at least one "arc-like" component. The latter was not the same as most material currently erupting in the Tofua Arc, but it must have had a more radiogenic Pb-isotope signature, perhaps similar to rocks analyzed from the islands of Tafahi, and Niuatoputapu. A comparison between the isotopic variations and the tectonic setting of the drill sites reveals consistent and important information regarding the mantle dynamics beneath the evolving backarc basin. We propose a model in which the source of upwelling magmas changes from Pacific to Indian Ocean asthenosphere with the propagation of seafloor spreading, a model with important implications for the rate of mantle influx into this region. Although the chemistries of backarc magmas have been profoundly influenced by this process, an additional consequence is the advection of Indian Ocean asthenosphere into the sub-arc mantle source. The isotopic compositions of arc rocks from the vicinity have been reevaluated on the basis of the proposed mantle advection model. We suggest that the slab-derived flux of trace elements into the arc wedge has remained relatively uniform with time (i.e., ~40 Ma), so that the change in arc chemistry results from mantle source substitution, rather than from differences in the composition of the downgoing plate.
Resumo:
Oceanic sediments contain the products of erosion of continental crust, biologic activity and chemical precipitation. These processes create a large diversity of their chemical and isotopic compositions. Here we focus on the influence of the distance from a continental platform on the trace element and isotopic compositions of sediments deposited on the ocean floor and highlight the role of zircons in decoupling high-field strength elements and Hf isotopic compositions from other trace elements and Nd isotopic compositions. We report major and trace element concentrations as well as Sr and Hf isotopic data for 80 sediments from the Lesser Antilles forearc region. The trace-element characteristics and the Sr and Hf isotopic compositions are generally dominated by detrital material from the continental crust but are also variably influenced by chemical or biogenic carbonate and pure biogenic silica. Next to the South American continent, at DSDP Site 144 and on Barbados Island, sediments, coarse quartz arenites, exhibit marked Zr and Hf excesses that we attribute to the presence of zircon. In contrast, the sediments from DSDP Site 543, which were deposited farther away from the continental platform, consist of fine clay and they show strong deficiencies in Zr and Hf. The enrichment or depletion of Zr-Hf is coupled to large changes in Hf isotopic compositions (-30 < epsilon-Hf < +4) that vary independently from the Nd isotopes. We interpret this feature as a clear expression of the "zircon effect" suggested by Patchett and coauthors in 1984. Zircon-rich sediments deposited next to the South American continent have very low epsilon-Hf values inherited from old zircons. In contrast, in detrital clay-rich sediments deposited a few hundred kilometers farther north, the mineral fraction is devoid of zircon and they have drastically higher epsilon-Hf values inherited from finer, clay-rich continental material. In the two DSDP sites, average Hf isotopes are very unradiogenic relative to other oceanic sediments worldwide (epsilon-Hf = -14.4 and -7.4) and they define the low Hf end member of the sedimentary field in Hf-Nd space. Their compositions correspond to end members that, when mixed with mantle, are able to reproduce the pattern of volcanic rocks from the Lesser Antilles. More generally, we find a relationship between Nb/Zr ratios and the vertical deviation of Hf isotope ratios from the Nd-Hf terrestrial array and we suggest that this relationship can be used as a tool to distinguish sediment input from fractionation during melting during the formation of arc lavas.
Resumo:
New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.