919 resultados para Particles.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel path of preparing PP/o-MMT nanocomposites, which pay attention to the breaking up of MMT original agglomerates and dispersing of its primary particles, rather than the intercalation or exfoliation degree of o-MMT, was reported. The method of predispersing the o-MMT particles into a polar poly(vinyl alcohol) (PVA) matrix and then melt blending the pre-treated PVA/o-MMT hybrids with PP was studied. 3-isopropenyl-alpha,alpha-dimethylbenzene-isocyanate (TMI) was used as a modifier of PVA to improve the compatibility between PVA and PP matrix. Pre-disperse o-MMT with TMI modified PVA was proved to be an effective way to get a composite with fine o-MMT particles dispersion. But the method, which is pre-dispersing o-MMT with non modified PVA and then using TMI to modify such PVA/o-MMT hybrid, would largely reduce the reaction degree between TMI and PVA because of the relatively lower reaction temperature. Although the latter method also can obtain finer dispersion composites than that with using PP-g-MAH as compatibilizer, the relatively higher degradation degree of PP matrix in this method will limit the use of this nanocomposite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-step method has been developed for synthesizing gold-polyaniline (Au@PANI) core-shell particles by using chlorauric acid (HAuCl4) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au@PANI particles was also proposed based on the results of control experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-based metal matrix composite reinforced by 10 wt.% W14Al86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W14Al86 alloy. Mechanical properties characterization revealed that the reinforcement of W14Al86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macroporous and modified macroporous poly(styrene-co-methyl methacrylate-co-divinylbenzene) particles (m-PS and mm-PS) supported Cp2ZrCl2 were prepared and applied to ethylene polymerization using methylaluminoxane (MAO) as cocatalyst. The influences of the swelling response of the support particles on the catalyst loading capabilities of the supports as well as on the activities of the supported catalysts were studied. It was shown that the Zr loadings of the supports and the activities of the supported catalysts increased with the swelling extent of the support particles. The m-PS or mm-PS supported catalysts exhibited very high activities when the support particles were well swollen, whereas those catalysts devoid of swelling treatment gave much lower activities. Investigation on the distribution of the supports in the polyethylene by TEM indicated that the swelling of the support particles allowed the fragmentation of the catalyst particles. In contrast, the fragmentation of the support particles with poor swelling was hindered during ethylene polymerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) was first used as chelating agent and metal nitrates as precursor of ferrite in the fabrication of nanocrystalline Ni0.65Zn0.35Cu0.1Fe1.9O4 particles by the sol-gel method. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Mossbauer spectroscopy. The dependence of the decomposition of dried gel, the formation of spinel structured NiZnCu ferrite, the sizes of annealed particles, the saturation magnetization and coercivity of annealed particles on annealing temperature is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The samples of as-synthesized siliceous MCM-41, extracted MCM-41, amorphous silica particles and silica xerogels were heat treated from room temperature to 1000degreesC. Their photoluminescence (PL) spectra at room temperature excited by 254nm and 365nm ultraviolet light (UV) were investigated and compared. Excited by 254nm UV the MCM-41 samples do not display PL but amorphous silica particles and silica xerogels show PL, which changes with the heat treatment conditions for the samples. However, when excited by 365nm UV the PL spectra for the MCM-41 and the amorphous samples are similar. The carbon impurity and E' center mechanisms can be ruled out as the origin of PL in siliceous MCM-41 under UV excitation. The PL of MCM-41 series samples probably originates from oxygen-related defect center like dropSi-O-. according to the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ phosphor layers have been deposited successfully on monodispersed and spherical SiO2 particles of different sizes ( 300, 500, 900 and 1200 nm) through a sol - gel process, resulting in the formation of core - shell structured SiO2@ LaPO4: Ce3+/ Tb3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microcopy (SEM), transmission electron microscopy (TEM), and general and time-resolved photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2@ LaPO4: Ce3+/ Tb3+ samples. The XRD results demonstrate that the LaPO4: Ce3+, Tb3+ layers begin to crystallize on the SiO2 templates after annealing at 700 degrees C, and the crystallinity increases on raising the annealing temperature. The obtained core - shell phosphors have perfectly spherical shape with a narrow size distribution, non-agglomeration, and a smooth surface. The doped rare-earth ions show their characteristic emission in the core - shell phosphors, i.e. Ce3+ 5d - 4f and Tb3+5D4 - F-7(J) (J = 6 - 3) transitions, respectively. The PL intensity of the Tb3+ increased on increasing the annealing temperature and the SiO2 core particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological features of isotactic polypropylene (iPP) and high impact polypropylene (hiPP) particles produced in a multistage polymerization process were investigated by field-emission electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. Study was mainly focused on architecture of iPP particle and distribution of elastomer phase (EPR) within the preformed iPP matrix. The iPP particle is an agglomerate of many subglobules (ca. several to hundred microns in diameter), while the subglobule in turn is formed by a great deal of primary globules (ca. 100 nm in diameter). Large macropores between the subglobules and finely distributed micropores within the subglobule constitute a network of pore inside the iPP particle. Ethylene/propylene comonomers can diffuse into the macro- and micropores and copolymerize on catalyst active sites located on periphery of the pores, forming elastomer phase inside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-1-y(2)SiO(5):Eu3+ and X-1-Y2SiO5:Ce3+ and/or Tb3+ phosphor layers have been coated on nonaggregated, monodisperse, submicron spherical SiO2 particles by a sol-gel process, followed by surface reaction at high temperature (1000 degrees C), to give core/shell structured SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), TEM, photoluminescence (PL), low voltage cathodoluminescence (CL), and time-resolved PL spectra and lifetimes are used to characterize these materials. The XRD results indicate that X-1-Y2SiO5 layers have been successfully coated on the sur- face Of SiO2 particles, as further verified by the FESEM and TEM images. The PL and CL studies suggest that SiO2@Y2SiO5:Eu3+, SiO2@Y2SiO5:Tb3+ (or Ce3+/Tb3+), and SiO2@Y2SiO5:Ce3+ core/shell particles exhibit red (Eu3+, 613 rim: D-5(0)-F-7(2)), green (Tb3+, 542nm: D-5(4)-F-7(5)), or blue (Ce3+, 450nm: 5d-4f) luminescence, respectively. Pl, excitation, emission, and time-resolved spectra demonstrate that there is an energy transfer from Ce3+ to Tb3+ in the SiO2@Y2SiO5:Ce3+,Tb3+ core/shell particles.