998 resultados para Paris (France) -- Gare de Lyon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between the digital human model (DHM) and environment typically occurs in two distinct modes; one, when the DHM maintains contacts with the environment using its self weight, wherein associated reaction forces at the interface due to gravity are unidirectional; two, when the DHM applies both tension and compression on the environment through anchoring. For static balancing in first mode of interaction, it is sufficient to maintain the projection of the centre of mass (COM) inside the convex region induced by the weight supporting segments of the body on a horizontal plane. In DHM, static balancing is required while performing specified tasks such as reach, manipulation and locomotion; otherwise the simulations would not be realistic. This paper establishes the geometric relationships that must be satisfied for maintaining static balance while altering the support configurations for a given posture and altering the posture for a given support condition. For a given location of the COM for a system supported by multiple point contacts, the conditions for simultaneous withdrawal of a specified set of contacts have been determined in terms of the convex hulls of the subsets of the points of contact. When the projection of COM must move beyond the existing support for performing some task, new supports must be enabled for maintaining static balance. This support seeking behavior could also manifest while planning for reduction of support stresses. Feasibility of such a support depends upon the availability of necessary features in the environment. Geometric conditions necessary for selection of new support on horizontal,inclined and vertical surfaces within the workspace of the DHM for such dynamic scenario have been derived. The concepts developed are demonstrated using the cases of sit-to-stand posture transition for manipulation of COM within the convex supporting polygon, and statically stable walking gaits for support seeking within the kinematic capabilities of the DHM. The theory developed helps in making the DHM realize appropriate behaviors in diverse scenarios autonomously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a unified framework using the unit cube for measurement, representation and usage of the range of motion (ROM) of body joints with multiple degrees of freedom (d.o.f) to be used for digital human models (DHM). Traditional goniometry needs skill and kn owledge; it is intrusive and has limited applicability for multi-d.o.f. joints. Measurements using motion capture systems often involve complicated mathematics which itself need validation. In this paper we use change of orientation as the measure of rotation; this definition does not require the identification of any fixed axis of rotation. A two-d.o.f. joint ROM can be represented as a Gaussian map. Spherical polygon representation of ROM, though popular, remains inaccurate, vulnerable due to singularities on parametric sphere and difficult to use for point classification. The unit cube representation overcomes these difficulties. In the work presented here, electromagnetic trackers have been effectively used for measuring the relative orientation of a body segment of interest with respect to another body segment. The orientation is then mapped on a surface gridded cube. As the body segment is moved, the grid cells visited are identified and visualized. Using the visual display as a feedback, the subject is instructed to cover as many grid cells as he can. In this way we get a connected patch of contiguous grid cells. The boundary of this patch represents the active ROM of the concerned joint. The tracker data is converted into the motion of a direction aligned with the axis of the segment and a rotation about this axis later on. The direction identifies the grid cells on the cube and rotation about the axis is represented as a range and visualized using color codes. Thus the present methodology provides a simple, intuitive and accura te determination and representation of up to 3 d.o.f. joints. Basic results are presented for the shoulder. The measurement scheme to be used for wrist and neck, and approach for estimation of the statistical distribution of ROM for a given population are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a cooperative particle swarm optimization (CPSO) based channel estimation/equalization scheme for multiple-input multiple-output zero-padded single-carrier (MIMO-ZPSC) systems with large dimensions in frequency selective channels. We estimate the channel state information at the receiver in time domain using a PSO based algorithm during training phase. Using the estimated channel, we perform information symbol detection in the frequency domain using FFT based processing. For this detection, we use a low complexity OLA (OverLap Add) likelihood ascent search equalizer which uses minimum mean square (MMSE) equalizer solution as the initial solution. Multiple iterations between channel estimation and data detection are carried out which significantly improves the mean square error and bit error rate performance of the receiver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of joint routing, scheduling and power control in a multihop wireless network when the nodes have multiple antennas. We focus on exploiting the multiple degrees-of-freedom available at each transmitter and receiver due to multiple antennas. Specifically we use multiple antennas at each node to form multiple access and broadcast links in the network rather than just point to point links. We show that such a generic transmission model improves the system performance significantly. Since the complexity of the resulting optimization problem is very high, we also develop efficient suboptimal solutions for joint routing, scheduling and power control in this setup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3-Hitting Set problem involves a family of subsets F of size at most three over an universe U. The goal is to find a subset of U of the smallest possible size that intersects every set in F. The version of the problem with parity constraints asks for a subset S of size at most k that, in addition to being a hitting set, also satisfies certain parity constraints on the sizes of the intersections of S with each set in the family F. In particular, an odd (even) set is a hitting set that hits every set at either one or three (two) elements, and a perfect code is a hitting set that intersects every set at exactly one element. These questions are of fundamental interest in many contexts for general set systems. Just as for Hitting Set, we find these questions to be interesting for the case of families consisting of sets of size at most three. In this work, we initiate an algorithmic study of these problems in this special case, focusing on a parameterized analysis. We show, for each problem, efficient fixed-parameter tractable algorithms using search trees that are tailor-made to the constraints in question, and also polynomial kernels using sunflower-like arguments in a manner that accounts for equivalence under the additional parity constraints.

Relevância:

100.00% 100.00%

Publicador: