994 resultados para Parasitologia veterinaria : Caes
Resumo:
The present study describes the ultrastructure of the mature spermatozoon of Lecithocladium excisum (Rudolphi, 1819) (Digenea: Hemiuroidea: Hemiuridae) from the stomach of the marine teleost Scomber japonicus Houttuyn (Scombridae) captured in the Atlantic Ocean, off Dakar (Senegal). The ultrastructural organization of the spermatozoon of L. excisum follows the general model described in most digeneans. It presents two axonemes of the 9+'1' pattern of the Trepaxonemata, nucleus, mitochondrion and parallel cortical microtubules, among other characters. However, some particularities of the spermatozoon of L. excisum are (i) the presence of a membranous ornamentation not associated with cortical microtubules in its anterior extremity, (ii) the presence of a very reduced number of cortical microtubules located only in the ventral side of the spermatozoon and (iii) the absence of several structures described in most digeneans such as spine-like bodies and cytoplasmic expansions.
Resumo:
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm. The mature spermatozoon presents two axonemes of the 9 +"1" trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.
Resumo:
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 +"1" trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.
Resumo:
The spermiogenesis process in Wardula capitellata begins with the formation of a differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. Each centriole develops into a free flagellum orthogonal to a median cytoplasmic process. Later these flagella rotate and become parallel to the median cytoplasmic process, which already exhibits two electron-dense areas and spinelike bodies before its proximodistal fusion with the flagella. The final stage of the spermiogenesis is characterized by the constriction of the ring of arched membranes, giving rise to the young spermatozoon, which detaches from the residual cytoplasm. The mature spermatozoon of W. capitellata presents most of the classical characters reported in digenean spermatozoa such as two axonemes of different lengths of the 9 + '1' trepaxonematan pattern, nucleus, mitochondrion, two bundles of parallel cortical microtubules and granules of glycogen. However, some peculiarities such as two lateral expansions accompanied by external ornamentation of the plasma membrane and spinelike bodies characterize the mature sperm. Moreover, a new spermatological character is described for the first time, the so-called cytoplasmic ornamented buttons.
Resumo:
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm. The mature spermatozoon presents two axonemes of the 9 +"1" trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.
Resumo:
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 +"1" trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.
Resumo:
The spermiogenesis process in Wardula capitellata begins with the formation of a differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. Each centriole develops into a free flagellum orthogonal to a median cytoplasmic process. Later these flagella rotate and become parallel to the median cytoplasmic process, which already exhibits two electron-dense areas and spinelike bodies before its proximodistal fusion with the flagella. The final stage of the spermiogenesis is characterized by the constriction of the ring of arched membranes, giving rise to the young spermatozoon, which detaches from the residual cytoplasm. The mature spermatozoon of W. capitellata presents most of the classical characters reported in digenean spermatozoa such as two axonemes of different lengths of the 9 + '1' trepaxonematan pattern, nucleus, mitochondrion, two bundles of parallel cortical microtubules and granules of glycogen. However, some peculiarities such as two lateral expansions accompanied by external ornamentation of the plasma membrane and spinelike bodies characterize the mature sperm. Moreover, a new spermatological character is described for the first time, the so-called cytoplasmic ornamented buttons.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.
Resumo:
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 +"1" trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.
Resumo:
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 +"1" trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.
Resumo:
Este libro presenta en forma condensada los conocimientos esenciales actuales de Bioquimica y Biologia Molecular. Mas de 1.200 voces y multiples referencias entre ellas permiten la comprension inmediata de los conceptos y nociones estudiados. Sera de gran utilidad para los estudiantes de Biologia, Medicina, Veterinaria y Farmacia, y tambien puede ser una obra de referencia que consultaran con provecho los profesores e investigadores de todos los niveles asi como los tecnicos de laboratorio.
Resumo:
This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.
Resumo:
This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.
Resumo:
Spermiogenesis and the ultrastructural characters of the spermatozoon of Echinobothrium euterpes are described by means of transmission electron microscopy, including cytochemical analysis for glycogen. Materials were obtained from a common guitarfish Rhinobatos rhinobatos caught in the Gulf of Gabès (Tunisia). Spermiogenesis in E. euterpes is characterized by the orthogonal development of two unequal flagella followed by the flagellar rotation and the proximodistal fusion of these flagella with the median cytoplasmic process. The most interesting pattern characterizing the diphyllidean cestodes is the presence of a triangular body constituted by fines and dense granules without visible striation and assimilated at the striated rootlets. This pattern, only related in the Diphyllidea cestodes may be a synapomorphy of this order. Spermiogenesis is also characterized by the presence of a very short flagellum (around 1 μm long), observed in all the stages of spermiogenesis. This type of flagellum has never been commented in the diphyllidean cestodes and should be considered as an evolved character in this group. In the latest stage of spermiogenesis, this short axoneme probably degenerates. Thus, the mature spermatozoon of E. euterpes possesses only one axoneme of 9 + '1' trepaxonematan pattern. It also exhibits a single helical electron-dense crested body, a spiraled nucleus, few parallel cortical microtubules, and α-glycogen granules. Similitudes and differences between spermatozoa of diphyllideans are discussed.