949 resultados para Parametric Vibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have experimentally studied the parametric excitation of Rb-87 atoms in a quadrupole-Ioffe-configuration trap. The temperature of an atomic cloud and number of trapped atoms versus time and modulation frequency of the parametric excitation field have been measured. We also noticed that the contribution of atomic collisions to the energy distributions can not be ignored in the case of weak excitation, which results in a lower temperature of the atomic cloud than by Gehm [Phys. Rev. A 58, 3914 (1998)] predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the parametric resonance in a magnetic quadrupole trap can be exploited to cool atoms by using Bird's method. In our programme the parametric resonance was realized by anisotropically modulating the trap potential. The modulation frequency dependences of temperature and fraction of the trapped atoms are explored. Furthermore, the temperature after the modulation as functions of the modulation amplitude and the mean elastic collision time are also studied. These results are valuable for the experiment of parametric resonance in a quadrupole trap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of a Michelson interferometer with a self-pumped phase-conjugate mirror to measure small vibration amplitudes of a rough surface is described. The distorted wave front of the light that is diffusely reflected from the rough surface is restored by phase conjugation to provide an interference signal with a high signal-to-noise ratio. The vibration amplitudes of a stainless-steel sample are measured with a precision of similar to 5 nm. (C) 2000 Optical Society of America OCIS codes: 120.3180, 190.5040, 120.7280.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents methods by which electrical analogies can be obtained for nonlinear systems. The accuracy of these methods is investigated and several specific types of nonlinear equations are studied in detail.

In Part I a general method is given for obtaining electrical analogs of nonlinear systems with one degree of freedom. Loop and node methods are compared and the stability of the loop analogy is briefly considered.

Parts II and III give a description of the equipment and a discussion of its accuracy. Comparisons are made between experimental and analytic solutions of linear systems.

Part IV is concerned with systems having a nonlinear restoring force. In particular, solutions of Duffing's equation are obtained, both by using the electrical analogy and also by approximate analytical methods.

Systems with nonlinear damping are considered in Part V. Two specific examples are chosen: (1) forced oscillations and (2) self-excited oscillations (van der Pol’s equation). Comparisons are made with approximate analytic solutions.

Part VI gives experimental data for a system obeying Mathieu's equation. Regions of stability are obtained. Examples of subharmonic, ultraharmonic, and ultrasubharmonic oscillat1ons are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broad bandwidth group match conditions are reported for a noncollinear type I optical parametric process. The theoretical calculations corresponding to two special situations in practice were made, respectively, which are in accordance with the published experimental results. Furthermore, we provide a method to not only achieve maximal parametric bandwidth output but also match the group velocities between three waves. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to improve the stability of pumping source of optical parametric amplifier. Analysis by simulation leads to the conclusion that the stability of the second harmonic can be improved by using properly the intensity of fundamental light and corresponding length of the crystal. By the method of the noncollinear two-pass second harmonic or the tandem second harmonic, the efficient crystal length is extended to a proper value, and the stability of the second harmonic output has been improved two times more than that for the fundamental light, and the conversion-efficiency is about 70% in experiment. When the variation of the fundamental light is about 10%, the variation of the second harmonic intensity has been controlled within 5%. (c) 2006 Elsevier Ltd. All rights reserved.