884 resultados para Papillomavirus Vaccines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infectious diseases such as SARS, influenza and bird flu may spread exponentially throughout communities. In fact, most infectious diseases remain major health risks due to the lack of vaccine or the lack of facilities to deliver the vaccines. Conventional vaccinations are based on damaged pathogens, live attenuated viruses and viral vectors. If the damage was not complete, the vaccination itself may cause adverse effects. Therefore, researchers have been prompted to prepare viable replacements for the attenuated vaccines that would be more effective and safer to use. DNA vaccines are generally composed of a double stranded plasmid that includes a gene encoding the target antigen under the transcriptional directory and control of a promoter region which is active in cells. Plasmid DNA (pDNA) vaccines allow the foreign genes to be expressed transiently in cells, mimicking intracellular pathogenic infection and inducing both humoral and cellular immune responses. Currently, because of their highly evolved and specialized components, viral systems are the most effective means for DNA delivery, and they achieve high efficiencies (generally >90%), for both DNA delivery and expression. As yet, viral-mediated deliveries have several limitations, including toxicity, limited DNA carrying capacity, restricted target to specific cell types, production and packing problems, and high cost. Thus, nonviral systems, particularly a synthetic DNA delivery system, are highly desirable in both research and clinical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current developments in gene medicine and vaccination studies are utilizing plasmid DNA (pDNA) as the vector. For this reason, there has been an increasing trend towards larger and larger doses of pDNA utilized in human trials: from 100-1000 μg in 2002 to 500-5000 μg in 2005. The increasing demand of pDNA has created the need to revolutionalize current production levels under optimum economy. In this work, different standard media (LB, TB and SOC) for culturing recombinant Escherichia coli DH5α harbouring pUC19 were compared to a medium optimised for pDNA production. Lab scale fermentations using the standard media showed that the highest pDNA volumetric and specific yields were for TB (11.4 μg/ml and 6.3 μg/mg dry cell mass respectively) and the lowest was for LB (2.8 μg/ml and 3.3 μg/mg dry cell mass respectively). A fourth medium, PDMR, designed by modifying a stoichiometrically-formulated medium with an optimised carbon source concentration and carbon to nitrogen ratio displayed pDNA volumetric and specific yields of 23.8 μg/ml and 11.2 μg/mg dry cell mass respectively. However, it is the economic advantages of the optimised medium that makes it so attractive. Keeping all variables constant except medium and using LB as a base scenario (100 medium cost [MC] units/mg pDNA), the optimised PDMR medium yielded pDNA at a cost of only 27 MC units/mg pDNA. These results show that greater amounts of pDNA can be obtained more economically with minimal extra effort simply by using a medium optimised for pDNA production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infectious diseases such as SARS, influenza and bird flu have the potential to cause global pandemics; a key intervention will be vaccination. Hence, it is imperative to have in place the capacity to create vaccines against new diseases in the shortest time possible. In 2004, The Institute of Medicine asserted that the world is tottering on the verge of a colossal influenza outbreak. The institute stated that, inadequate production system for influenza vaccines is a major obstruction in the preparation towards influenza outbreaks. Because of production issues, the vaccine industry is facing financial and technological bottlenecks: In October 2004, the FDA was caught off guard by the shortage of flu vaccine, caused by a contamination in a US-based plant (Chiron Corporation), one of the only two suppliers of US flu vaccine. Due to difficulties in production and long processing times, the bulk of the world's vaccine production comes from very small number of companies compared to the number of companies producing drugs. Conventional vaccines are made of attenuated or modified forms of viruses. Relatively high and continuous doses are administered when a non-viable vaccine is used and the overall protective immunity obtained is ephemeral. The safety concerns of viral vaccines have propelled interest in creating a viable replacement that would be more effective and safer to use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmid DMA offers the promise of a new generation of pharmaceuticals that will address the often overlooked issue of vaccine production by offering a simple and reproducible method for producing a vaccine. Through reverse engineering, production could be reduced from up to 9 months to as little as 1 month. Simplified development and faster turn-around times means that DMA offers a solution to the vaccine crisis and will help to contain future viral outbreaks by enabling the production of a vaccine against new viral strains in the shortest possible time. Work currently being completed in the area of plasmid DMA production, purification and encapsulation will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major drawback to the immunological potency of conventional vaccines, resulting in reduced level of immune responses, tissue injury, shock and high cytotoxicity, thus making their applications contraindicated in immunodeficiency diseases, is the presence of high contaminant concentrations in vaccine titers. Vaccine contamination arises from the simultaneous occurrence of competitive pathways resulting in the formation of other bio-products during cellular metabolism aside the pathways necessary for the production of vaccine molecules. One of such vaccine contaminating molecules is endotoxins which are mainly lipopolysaccharides (LPS) complexes found in the membrane of bacterial cell wall. The structural dynamics of these molecules make their removal from vaccine titers problematic, thus making vaccine endotoxin removal a major research endeavour. This presentation will discuss a novel technique for reducing the endotoxin level of vaccines. The technique commences with the disentanglement of endotoxin-vaccine molecular bonding and then capturing the vaccine molecules on an affinity monolith to separate the vaccine molecules from the endotoxins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maturing of the biotechnology industry and a focus on productivity has seen a shift from discovery science to small-scale bench-top research to higher productivity, large scale production. Health companies are aggressively expanding their biopharmaceutical interests, an expansion which is facilitated by biochemical and bioprocess engineering. An area of continuous growth is vaccines. Vaccination will be a key intervention in the case of an influenza pandemic. The global manufacturing capacity for fast turn around vaccines is currently woefully inadequate at around 300 million shots. As the prevention of epidemics requires > 80 % vaccination, in theory the world should currently be aiming for the ability to produce around 5.3 billion vaccines. Presented is a production method for the creation of a fast turn around DNA vaccine. A DNA vaccine could have a production time scale of as little as two weeks. This process has been harnessed into a pilot scale production system for the creation of a pre-clinical grade malaria vaccine in a collaborative project with the Coppel Lab, Department of Microbiology, Monash University. In particular, improvements to the fermentation, chromatography and delivery stages will be discussed. Consideration will then be given as to how the fermentation stage affects the mid and downstream processing stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change and solar ultraviolet radiation may affect vaccine-preventable infectious diseases (VPID), the human immune response process and the immunization service delivery system. We systematically reviewed the scientific literature and identified 37 relevant publications. Our study shows that climate variability and ultraviolet radiation may potentially affect VPID and the immunization delivery system through modulating vector reproduction and vaccination effectiveness, possibly influencing human immune response systems to the vaccination, and disturbing immunization service delivery. Further research is needed to determine these affects on climate-sensitive VPID and on human immune response to common vaccines. Such research will facilitate the development and delivery of optimal vaccination programs for target populations, to meet the goal of disease control and elimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influenza is associated with substantial disease burden [ 1]. Development of a climate-based early warning system for in fluenza epidemics has been recommended given the signi fi - cant association between climate variability and influenza activity [2]. Brisbane is a subtropical city in Australia and offers free in fluenza vaccines to residents aged ≥65 years considering their high risks in developing life-threatening complications, especially for in fluenza A predominant seasons. Hong Kong is an international subtropical city in Eastern Asia and plays a crucial role in global infectious diseases transmission dynamics via the international air transportation network [3, 4]. We hypothesized that Hong Kong in fluenza surveillance data could provide a signal for in fluenza epidemics in Brisbane [ 4]. This study aims to develop an epidemic forecasting model for influenza A in Brisbane elders, by combining climate variability and Hong Kong in fluenza A surveillance data. Weekly numbers of laboratoryconfirmed influenza A positive isolates for people aged ≥65 years from 2004 to 2009 were obtained for Brisbane from Queensland Health, Australia, and for Hong Kong from Queen Mary Hospital (QMH). QMH is the largest public hospital located in Hong Kong Island, and in fluenza surveillance data from this hospital have been demonstrated to be representative for influenza circulation in the entirety of Hong Kong [ 5]. The Brisbane in fluenza A epidemics occurred during July –September, whereas the Hong Kong in fluenza A epidemics occurred during February –March and May –August.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Globally, over 800 000 children under five die each year from infectious diseases caused by Streptococcus pneumoniae. To understand genetic relatedness between isolates, study transmission routes, assess the impact of human interventions e.g. vaccines, and determine infection sources, genotyping methods are required. The ‘gold standard’ genotyping method, Multi-Locus Sequence Typing (MLST), is useful for long-term and global studies. Another genotyping method, Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA), has emerged as a more discriminatory, inexpensive and faster technique; however there is no universally accepted method and it is currently suitable for short-term and localised epidemiology studies. Currently Australia has no national MLST database, nor has it adopted any MLVA method for short-term or localised studies. This study aims to improve S. pneumoniae genotyping methods by modifying the existing MLVA techniques to be more discriminatory, faster, cheaper and technically less demanding than previously published MLVA methods and MLST. Methods Four different MLVA protocols, including a modified method, were applied to 317 isolates of serotyped invasive S. pneumoniae isolated from sterile body sites of Queensland children under 15 years from 2007–2012. MLST was applied to 202 isolates for comparison. Results The modified MLVA4 is significantly more discriminatory than the ‘gold standard’ MLST method. MLVA4 has similar discrimination compared to other MLVA techniques in this study). The failure to amplify particular loci in previous MLVA methods were minimised in MLVA4. Failure to amplify BOX-13 and Spneu19 were found to be serotype specific. Conclusion We have modified a highly discriminatory MLVA technique for genotyping Queensland invasive S. pneumoniae. MLVA4 has the ability to enhance our understanding of the pneumococcal epidemiology and the changing genetics of the pneumococcus in localised and short-term studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Book description: "Over 50,000 new cases of head and neck cancer are diagnosed each year in the United States. The majority of these are squamous cell carcinoma (HNSCC), associated with human papillomavirus infection and carcinogenic behaviors such as tobacco use and alcohol consumption. Although these are more common, there are several other causes that this book addresses. This book examines the epidemiology of head and neck cancer. It discusses the management of head neck cancer as well as treatment outcomes."--publisher website

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Head and neck cancers (HNC) are a globally prevalent malignancy. Despite the efforts of reducing several known etiological factors such as smoking and drinking to lower the incidence of HNC at the population level, the incidence of oropharyngeal cancers (OPC) is on the rise. OPC is caused by human papillomavirus (HPV) and most prevalent in a younger age group. This review critically examines the epidemiology, biology and laboratory detection of OPC and provides future insights into combating this debilitating disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research investigated the use of DNA fingerprinting to characterise the bacteria Streptococcus pneumoniae or pneumococcus, and hence gain insight into the development of new vaccines or antibiotics. Different bacterial DNA fingerprinting methods were studied, and a novel method was developed and validated, which characterises different cell coatings that pneumococci produce. This method was used to study the epidemiology of pneumococci in Queensland before and after the introduction of the current pneumococcal vaccine. This study demonstrated that pneumococcal disease is highly prevalent in children under four years, that the bacteria can `switch' its cell coating to evade the vaccine, and that some DNA fingerprinting methods are more discriminatory than others. This has an impact on understanding which strains are more prone to cause invasive disease. Evidence of the excellent research findings have been published in high impact internationally refereed journals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and objective Individuals with chronic obstructive pulmonary disease (COPD) are at a high risk of developing significant complications from infection with the influenza virus. It is therefore vital to ensure that prophylaxis with the influenza vaccine is effective in COPD. The aim of this study was to assess the immunogenicity of the 2010 trivalent influenza vaccine in persons with COPD compared to healthy subjects without lung disease, and to examine clinical factors associated with the serological response to the vaccine. Methods In this observational study, 34 subjects (20 COPD, 14 healthy) received the 2010 influenza vaccine. Antibody titers at baseline and 28 days post-vaccination were measured using the hemagglutination inhibition assay (HAI) assay. Primary endpoints included seroconversion (≥4-fold increase in antibody titers from baseline) and the fold increase in antibody titer after vaccination. Results Persons with COPD mounted a significantly lower humoral immune response to the influenza vaccine compared to healthy participants. Seroconversion occurred in 90% of healthy participants, but only in 43% of COPD patients (P=0.036). Increasing age and previous influenza vaccination were associated with lower antibody responses. Antibody titers did not vary significantly with cigarette smoking, presence of other comorbid diseases, or COPD severity. Conclusion The humoral immune response to the 2010 influenza vaccine was lower in persons with COPD compared to non-COPD controls. The antibody response also declined with increasing age and in those with a history of prior vaccination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Given that viral infections are common triggers for exacerbations of Chronic Obstructive Pulmonary Disease (COPD), current clinical guidelines recommend that all patients receive annual influenza vaccinations. A detailed examination of the immune response to vaccination in COPD has not previously been undertaken, so this study aimed to compare immune responses to influenza vaccination between COPD patients and healthy subjects. Methods: Twenty one COPD patients and fourteen healthy subjects were recruited and cellular immune function was assessed pre- and post- vaccination with trivalent inactivated influenza vaccine. Results: One month after vaccination, H1N1 specific antibody titres were significantly lower in COPD patients than in healthy controls (p=0.02). Multivariate analysis demonstrated that post vaccination antibody titres were independently associated with COPD, but not with age or smoking status. Innate immune responses to the vaccine preparation did not differ between the two populations. Serum concentrations of IL-21, a cytokine that is important for B cell development and antibody synthesis, were also lower in COPD patients than in healthy subjects (p<0.01). In vitro functional differences were also observed, with fewer proliferating B cells expressing CD27 (p=0.04) and reduced T-cell IFN-γ synthesis (p<0.01) in COPD patients, relative to healthy subjects. Conclusions: In conclusion, COPD was associated with altered immune responses to influenza vaccination compared to healthy controls with reductions in both T-cell and B-cell function. These findings provide a foundation for future research aimed at optimising the effectiveness of influenza vaccination in COPD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Rhinoviruses (RV) are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods: Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old). Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results: Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p < 0.02 and p < 0.05) and ≥52 year old women (p < 0.02 and p > 0.005). There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions: This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.