966 resultados para Palladium(II) complexes
Resumo:
The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.
Resumo:
Asymmetrically dibridged dicopper(II) complexes, [Cu-2(OH)(O2CC6H4-p-Me)(tmen)(2)(H2O)](ClO4)(2) (1) and [Cu-2(OH)(O2CC6H4-p-OMe)(tmen)(2)(H2O)](ClO4)(2) (2) (tmen = N,N,N',N'-tetramethylethane-1,2-diamine), were prepared and structurally characterized. Complex 1 crystallizes in the monoclinic space group P2(1)/a with a = 17.718(2), b = 9.869(1), c = 19.677(2) Angstrom, beta = 115.16(1)degrees, V = 3114.3(6) Angstrom(3) and Z = 4. The structure was refined to R(wR(2)) = 0.067(0.178). Complex 2 crystallizes in the monoclinic space group P2(1)/a with a = 17.695(3), b = 9.574(4), c = 20.104(2) Angstrom, beta = 114.18(1)degrees, V = 3107(1) Angstrom(3) and Z = 4. The final residuals are R(wR(2)) = 0.067(0.182). The complexes have a [Cu-2(mu-OH)(mu-OH)(mu-O2CAr)](2+) core with tmen Ligands occupying the terminal sites of the core. In addition, one copper is axially bound to a water molecule. The Cu ... Cu distances and the Cu-OH Cu angles in the core are 3.394(1) Angstrom, 124.4(2)degrees for 1 and 3.374(1) Angstrom, 123.3(3)degrees for 2. The complexes show axial X-band EPR spectral features in methanol glass at 77 K giving g(perpendicular to) = 2.02, g(parallel to) = 2.3 (A(parallel to) = 165 x 10(-4) cm(-1)) and a visible band near similar to 630 nm in methanol. The complexes are weakly antiferromagnetic. A theoretical fit of the magnetic susceptibility data in the temperature range 40-295 K gives -J = 10 cm(-1), g = 2.05 for 1 and -J = 10 cm(-1), g = 2.0 for 2. Plots of -2J versus the Cu-OH-Cu angle (phi) in this class of asymmetrically dibridged dicopper(II) complexes having d(x2-y2)-d(x2-y2) magnetic orbitals show a linear magneto-structural correlation: -2J(cm(-1)) = 11.48 phi(deg) - 1373.
Resumo:
Copper(II) complexes Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H(2)satP) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near -0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (similar to 1.85 mu(B)) are avid DNA binders giving K(b) values within 1.0 x 10(5) - 8.0 x 10(5) M(-1). Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC(50) = 8.3(+/- 1.0) mu M) in visible light, while showing lower dark toxicity (IC(50) = 17.2(+/- 1.0) mu M). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC(50) = 30.0(+/- 1.0) mu M in dark), while retaining its photocytotoxicity (IC(50) = 8.0(+/- 1.0) mu M). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Palladium and platinum dichloride complexes of a series of symmetrically and unsymmetrically substituted 25,26;27,28-dibridged p-tert-butyl-calix[4]arene bisphosphites in which two proximal phenolic oxygen atoms of p-tert-butyl-or p-H-calix[4]arene are connected to a P(OR) ( R = substituted phenyl) moiety have been synthesized. The palladium dichloride complexes of calix[4]arene bisphosphites bearing sterically bulky aryl substituents undergo cyclometalation by C-C or C-H bond scission. An example of cycloplatinated complex is also reported. The complexes have been characterized by NMR spectroscopic and single crystal X-ray diffraction studies. During crystallization of the palladium dichloride complex of a symmetrically substituted calix[4]arene bisphosphite in dichloromethane, insertion of oxygen occurs into the Pd-P bond to give a P,O-coordinated palladium dichloride complex. The calix[4]arene framework in these bisphosphites and their metal complexes adopt distorted cone conformation; the cone conformation is more flattened in the metal complexes than in the free calix[4]arene bisphosphites. Some of these cyclometalated complexes proved to be active catalysts for Heck and Suzuki C-C cross-coupling reactions but, on an average, the yields are only modest. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordination-driven self-assembly of binuclear half-sandwich p-cymene ruthenium(II) complexes [Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) or [Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)(MeOH)(2)(eta(6)-p-cymene)(2)]( O3SCF3)(2) (1b) separately with an imidazole-based tetratopic donor L in methanol affords two tetranuclear metallamacrocycles 2a and 2b, respectively. Conversely, the similar combination of L with 2,5-dihydroxy-1,4-benzoquinonato (dhbq) bridged binuclear complex [Ru-2(mu-eta(C6H2O4)-C-4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1c) in 1:2 molar ratio resulted in an octanuclear macrocyclic cage 2c. All the self-assembled macrocycles 2a-2c were isolated as their triflate salts in high yields and were characterized fully by multinuclear (H-1, C-13 and F-19) NMR, infrared (IR) and electrospray ionization mass spectrometry (ESIMS). In addition, the molecular structure of macrocycle 2a was established unequivocally by single-crystal X-ray diffraction analysis and adopts a tetranuclear rectangular geometry with the dimensions of 5.53 angstrom x 12.39 angstrom. Furthermore, the photo-and electrochemical properties of these newly synthesized assemblies have been studied by using UV-vis absorption and cyclic voltammetry analysis.
Resumo:
Neutral half-sandwich organometallic ruthenium(II) complexes of the type (?6-cymene)RuCl2(L)] (H1H10), where L represents a heterocyclic ligand, have been synthesized and characterized spectroscopically. The structures of five complexes were also established by single-crystal X-ray diffraction confirming a piano-stool geometry with ?6 coordination of the arene ligand. Hydrogen bonding between the N?H group of the heterocycle and a chlorine atom attached to Ru stabilizes the metalligand interaction. Complexes coordinated to a mercaptobenzothiazole framework (H1) or mercaptobenzoxazole (H6) showed high cytotoxicity against several cancer cells but not against normal cells. In vitro studies have shown that the inhibition of cancer cell growth involves primarily G1-phase arrest as well as the generation of reactive oxygen species (ROS). The complexes are found to bind DNA in a non-intercalative fashion and cause unwinding of plasmid DNA in a cell-free medium. Surprisingly, the cytotoxic complexes H1 and H6 differ in their interaction with DNA, as observed by biophysical studies, they either cause a biphasic melting of the DNA or the inhibition of topoisomerase IIa activity, respectively. Substitution of the aromatic ring of the heterocycle or adding a second hydrogen-bond donor on the heterocycle reduces the cytotoxicity.
Resumo:
In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).
Resumo:
Two new Ru(II)-complexes RuH(Tpms)(PPh3)(2)] 1 (Tpms - (C3H3N2)(3)CSO3, tris-(pyrazolyl) methane sulfonate) and Ru(OTf)(Tpms)(PPh3)(2)] 2 (OTf = CF3SO3) have been synthesized and characterized wherein Ru-H and Ru-OTf are the key reactive centers. Reaction of 1 with HOTf results in the Ru(eta(2)-H-2)(Tpms)(PPh3)(2)]OTf] complex 3, whereas reaction of 1 with Me3SiOTf affords the dihydrogen complex 3 and complex 1 through an unobserved sigma-silane intermediate. In addition, an attempt to characterize the sigma methane complex via reaction of complex 1 with CH3OTf yields complex 2 and free methane. On the other hand, reaction of Ru(OTf)(Tpms)(PPh3)(2)] 2 with H-2 and PhMe2SiH at low temperature resulted in sigma-H-2, 3 and a probable sigma-silane complexes, respectively. However, no sigma-methane complex was observed for the reaction of complex 2 with methane even at low temperature. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.
Resumo:
CONSPECTUS: Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-kappa B besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.
Resumo:
Two dinuclear copper(II) complexes Li(H2O)(3)(CH3OH)](4)Cu2Br4]Cu-2(cpdp)(mu-O2CCH3)](4)(OH)(2) (1), Cu (H2O)(4)]Cu-2(cpdp)(mu-O2CC6H5)](2)Cl-2 center dot 5H(2)O (2), and a dinuclear zinc(II) complex Zn-2(cpdp)(mu-O2CCH3)] (3) have been synthesized using pyridine and benzoate functionality based new symmetrical dinucleating ligand, N, N'-Bis2-carboxybenzomethyl]-N, N'-Bis2-pyridylmethyl]-1,3-diaminopropan-2-ol (H(3)cpdp). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H3cpdp with stoichiometric amounts of Cu-2(O2CCH3)(4)(H2O)(2)], CuCl2 center dot 2H(2)O/C6H5COONa, and Zn(CH3COO)(2)center dot 2H(2)O, respectively, in methanol in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination. The X-ray crystal structure analyses reveal that the copper(II) ions in complexes 1 and 2 are in a distorted square pyramidal geometry with Cu-Cu separation of 3.455(8) angstrom and 3.492(1)angstrom, respectively. The DFT optimized structure of complex 3 indicates that two zinc(II) ions are in a distorted square pyramidal geometry with Zn-Zn separation of 3.492(8)angstrom. UV-Vis and mass spectrometric analyses of the complexes confirm their dimeric nature in solution. Furthermore, H-1 and C-13 NMR spectroscopic investigations authenticate the integrity of complex 3 in solution. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of antiferromagnetic interactions between the copper centers, with J = -26.0 cm(-1) and -23.9 cm(-1) ((H) over cap = -2JS(1)S(2)) in complexes 1 and 2, respectively. In addition, glycosidase-like activity of the complexes has been investigated in aqueous solution at pH similar to 10.5 by UV-Vis spectrophotometric technique using p-nitrophenyl-alpha-D-glucopyranoside (4) and p-nitrophenyl-beta-D-glucopyranoside (5) as model substrates. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Coordination-driven self-assembly of dinuclear half-sandwich p-cymene ruthenium(II) complexes Ru-2(mu-eta(4)-C2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) and Ru-2(mu-eta(4)-C6H2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) separately with imidazole-based tritopic donors (L-1-L-2) in methanol yielded a series of hexanuclear 3+2] trigonal prismatic cages (2-5), respectively L-1 = 1,3,5-tris(imidazole-1-yl) benzene; L-2 = 4,4',4 `'-tris(imidazole-1-yl) triphenylamine]. All the self-assembled cages 2-5 were characterized by various spectroscopic techniques (multinuclear NMR, Infra-red and ESI-MS) and their sizes, shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) computation. Despite the possibility due to the free rotation of donor sites of imidazole ligands, of two different atropoisomeric prismatic cages (C-3h or C-s) and polymeric product, the self-selection of single (C(3)h) conformational isomeric cages as the only product is a noteworthy observation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
9 p.
Resumo:
A series of Cs- and C1-symmetric doubly-linked ansa-metallocenes of the general formula {1,1'-SiMe2-2,2'-E-('ƞ5-C5H2-4-R1)-(ƞ5-C5H-3',5'-(CHMe2)2)}ZrC2 (E = SiMe2 (1), SiPh2 (2), SiMe2 -SiMe2 (3); R1 = H, CHMe2, C5H9, C6H11, C6H5) has been prepared. When activated by methylaluminoxane, these are active propylene polymerization catalysts. 1 and 2 produce syndiotactic polypropylenes, and 3 produces isotactic polypropylenes. Site epimerization is the major pathway for stereoerror formation for 1 and 2. In addition, the polymer chain has slightly stronger steric interaction with the diphenylsilylene linker than with the dimethylsilylene linker. This results in more frequent site epimerization and reduced syndiospecificity for 2 compared to 1.
C1-Symmetric ansa-zirconocenes [1,1 '-SiMe2-(C5H4)-(3-R-C5H3)]ZrCl2 (4), [1,1 '-SiMe2-(C5H4)-(2,4-R2-C5H2)]ZrCl2 (5) and [1,1 '-SiMe2-2,2 '-(SiMe2-SiMe2)-(C5H3)-( 4-R-C5H2)]ZrCl2 (6) have been prepared to probe the origin of isospecificity in 3. While 4 and 3 produce polymers with similar isospecificity, 5 and 6 give mostly hemi-isotactic-like polymers. It is proposed that the facile site epimerization via an associative pathway allows rapid equilibration of the polymer chain between the isospecific and aspecific insertion sites. This results in more frequent insertion from the isospecific site, which has a lower kinetic barrier for chain propagation. On the other hand, site epimerization for 5 and 6 is slow. This leads to mostly alternating insertion from the isospecific and aspecific sites, and consequently, a hemi-isotactic-like polymers. In comparison, site epimerization is even slower for 3, but enchainment from the aspecific site has an extremely high kinetic barrier for monomer coordination. Therefore, enchainment occurs preferentially from the isospecific site to produce isotactic polymers.
A series of cationic complexes [(ArN=CR-CR=NAr)PtMe(L)]+[BF4]+ (Ar = aryl; R = H, CH3; L = water, trifluoroethanol) has been prepared. They react smoothly with benzene at approximately room temperature in trifluoroethanol solvent to yield methane and the corresponding phenyl Pt(II) cations, via Pt(IV)-methyl-phenyl-hydride intermediates. The reaction products of methyl-substituted benzenes suggest an inherent reactivity preference for aromatic over benzylic C-H bond activation, which can however be overridden by steric effects. For the reaction of benzene with cationic Pt(II) complexes, in which the diimine ligands bear 3,5-disubstituted aryl groups at the nitrogen atoms, the rate-determining step is C-H bond activation. For the more sterically crowded analogs with 2,6-dimethyl-substituted aryl groups, benzene coordination becomes rate-determining. The more electron-rich the ligand, as reflected by the CO stretching frequency in the IR spectrum of the corresponding cationic carbonyl complex, the faster the rate of C-H bond activation. This finding, however, does not reflect the actual C-H bond activation process, but rather reflects only the relative ease of solvent molecules displacing water molecules to initiate the reaction. That is, the change in rates is mostly due to a ground state effect. Several lines of evidence suggest that associative substitution pathways operate to get the hydrocarbon substrate into, and out of, the coordination sphere; i.e., that benzene substitution proceeds by a solvent- (TFE-) assisted associative pathway.
Resumo:
The asymmetric synthesis of quaternary stereocenters remains a challenging problem in organic synthesis. Past work from the Stoltz laboratory has resulted in methodology to install quaternary stereocenters α- or γ- to carbonyl compounds. Thus, the asymmetric synthesis of β-quaternary stereocenters was a desirable objective, and was accomplished by engineering the palladium-catalyzed addition of arylmetal organometallic reagents to α,β-unsaturated conjugate acceptors.
Herein, we described the rational design of a palladium-catalyzed conjugate addition reactions utilizing a catalyst derived from palladium(II) trifluoroacetate and pyridinooxazole ligands. This reaction is highly tolerant of protic solvents and oxygen atmosphere, making it a practical and operationally simple reaction. The mild conditions facilitate a remarkably high functional group tolerance, including carbonyls, halogens, and fluorinated functional groups. Furthermore, the reaction catalyzed conjugate additions with high enantioselectivity with conjugate acceptors of 5-, 6-, and 7-membered ring sizes. Extension of the methodology toward the asymmetric synthesis of flavanone products is presented, as well.
A computational and experimental investigation into the reaction mechanism provided a stereochemical model for enantioinduction, whereby the α-methylene protons adjacent the enone carbonyl clashes with the tert-butyl groups of the chiral ligand. Additionally, it was found that the addition of water and ammonium hexafluorophosphate significantly increases the reaction rate without sacrificing enantioselectivity. The synergistic effects of these additives allowed for the reaction to proceed at a lower temperature, and thus facilitated expansion of the substrate scope to sensitive functional groups such as protic amides and aryl bromides. Investigations into a scale-up synthesis of the chiral ligand (S)-tert-butylPyOx are also presented. This three-step synthetic route allowed for synthesis of the target compound of greater than 10 g scale.
Finally, the application of the newly developed conjugate addition reaction toward the synthesis of the taiwaniaquinoid class of terpenoid natural products is discussed. The conjugate addition reaction formed the key benzylic quaternary stereocenter in high enantioselectivity, joining together the majority of the carbons in the taiwaniaquinoid scaffold. Efforts toward the synthesis of the B-ring are presented.