937 resultados para Packet Filter
Resumo:
We investigate return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion by means of the linear time-invariant system theory. It is shown that the problem of converting random RZ stream to NRZ stream can be reduced to constructing an appropriate transfer function for the linear filter. This approach is then used to propose novel optimally-designed single fiber Bragg grating (FBG) filter scheme for RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion. The spectral response of the FBG is designed according to the optical spectra of the algebraic difference between isolated NRZ and RZ pulses, and the filter order is optimized for the maximum Q-factor of the output NRZ signals. Experimental results as well as simulations show that such an optimallydesigned FBG can successfully perform RZ-OOK/DPSK/DQPSK to NRZOOK/ DPSK/DQPSK format conversion.
Resumo:
A compact Θ shaped microfiber resonator for multifunctional, tunable and wideband filter is proposed. The filtering performance of reflection and transmission spectra depending on coupling coefficients and cavity length is theoretically investigated and experimentally demonstrated. © 2015 OSA.
Resumo:
Hybrid WDM/TDM enabled microstructure based optical fiber sensor network with large capacity is proposed. Assisted by Fabry-Perot filter, the demodulation system with high speed of 500Hz and high wavelength resolution less than 4.91pm is realized. © OSA 2015.
Resumo:
An erbium doped fiber ring laser achieving soliton mode locking by the use of an intra-cavity all-fiber polarization interference filter (AFPIF) has been demonstrated. To incorporate an AFPIF with relative narrow transmission bandwidth, the laser has produced clean soliton pulses of 1.2 ps duration at a repetition rate of 14.98 MHz with a polarization extinction ratio up to 25.7 dB. Moreover, we have demonstrated that the operating wavelength of the mode locking laser can be tuned over 20 nm range from 1545 to 1565 nm by thermally tuning the AFPIF cavity. © 2012 Optical Society of America.
Resumo:
We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller. © 2012 Optical Society of America.
Resumo:
In this paper we proposed a demodulation scheme based on tunable FP filter for the WDM/FDM sensing system of the microstructure mentioned in the previous work. Simulation is done to prove the feasibility of demodulating the microstructure with the tunable FP filter. The experiments result showed high consistence with the simulation. And with the help of the high speed FPGA module and a high resolution AD/DA card, the system has achieved a very high resolution, up to 2.5 pm, and wavelength ranges 1520nm to 1590 nm.
Spectral width and pulse duration tuning in Yb+ modelocked fiber laser with birefringent Lyot filter
Resumo:
A method of pulse duration and spectral width control in all-fiber Ytterbium modelocked laser with SWCNT is presented. It is shown that PM-fiber can also serve as a spectrally selective filter. © 2012 OSA.
Resumo:
A real-time 5×21.6 Gbit/s WDM electro-optical transceiver is presented. Optical carriers were spaced by 20 GHz and each one transmitted four orthogonally overlapping broadband subcarriers. Only analogue electronics were employed, achieving an unprecedented spectral efficiency in DSP-less SCM links.
Resumo:
This paper studies the key aspects of an optical link which transmits a broadband microwave filter bank multicarrier (FBMC) signal. The study is presented in the context of creating an all-analogue real-time multigigabit orthogonal frequency division multiplexing electro-optical transceiver for short range and high-capacity data center networks. Passive microwave filters are used to perform the pulse shaping of the bit streams, allowing an orthogonal transmission without the necessity of digital signal processing (DSP). Accordingly, a cyclic prefix that would cause a reduction in the net data rate is not required. An experiment consisting of three orthogonally spaced 2.7 Gbaud quadrature phase shift keyed subchannels demonstrates that the spectral efficiency of traditional DSP-less subcarrier multiplexed links can be potentially doubled. A sensitivity of -29.5 dBm is achieved in a 1-km link.
Resumo:
We present the operation of an ultrafast passively mode-locked fibre laser, in which flexible control of the pulse formation mechanism is readily realised by an in-cavity programmable filter the dispersion and bandwidth of which can be software configured. We show that conventional soliton, dispersion- managed (DM) soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be reliably targeted by changing the filter’s dispersion and bandwidth only, while no changes are made to the physical layout of the laser cavity. Numerical simulations are presented which confirm the different nonlinear pulse evolutions inside the laser cavity. The proposed technique holds great potential for achieving a high degree of control over the dynamics and output of ultrafast fibre lasers, in contrast to the traditional method to control the pulse formation mechanism in a DM fibre laser, which involves manual optimisation of the relative length of fibres with opposite-sign dispersion in the cavity. Our versatile ultrafast fibre laser will be attractive for applications requiring different pulse profiles such as in optical signal processing and optical communications.
Resumo:
This paper proposes the use of the 2-D differential decoding to improve the robustness of dual-polarization optical packet receivers and is demonstrated in a wavelength switching scenario for the first time.
Resumo:
Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.
Resumo:
we demonstrate a polarization switchable, single/ multi-wavelength fiber ring laser based on an intra-cavity all fiber Lyot filter. The laser can operate at single-, multi-wavelength by adjusting polarization controller, and givessingle polarization output. © 2015 OSA.
Resumo:
Press Release on the College of Medicine.
Resumo:
Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.