792 resultados para Pacific (Motorship)
Resumo:
The dusky rockfish (Sebastes ciliatus) of the North Pacific Ocean has been considered a single variable species with light and dark forms distributed in deep and shallow water, respectively. These forms have been subjected to two distinct fisheries separately managed by federal and state agencies: the light deep form is captured in the offshore trawl fishery; the dark shallow form, in the nearshore jig fishery. The forms have been commonly recognized as the light dusky and dark dusky rockfishes. From morphological evidence correlated with color differences in some 400 specimens, we recognize two species corresponding with these color forms. Sebastes ciliatus (Tilesius) is the dark shallow-water species found in depths of 5−160 m in the western Aleutian Islands and eastern Bering Sea to British Columbia. The name Sebastes variabilis (Pallas) is resurrected from the synonymy of S. ciliatus to apply to the deeper water species known from depths of 12−675 m and ranging from Hokkaido, Japan, through the Aleutian Islands and eastern Bering Sea, to Oregon. Sebastes ciliatus is uniformly dark blue to black, gradually lightening on the ventrum, with a jet black peritoneum, a smaller symphyseal knob, and fewer lateral-line pores compared to S. variabilis. Sebastes variabilis is more variable in body color, ranging from light yellow to a more usual tan or greenish brown to a nearly uniform dark dorsum, but it invariably has a distinct red to white ventrum. Synonymies, diagnoses, descriptions, and geographic distributions are provided for each species.
Resumo:
The diet of Pacific cod (Gadus macrocephalus) in the area of Pavlof Bay, Alaska, was studied in the early 1980s by Albers and Anderson (1985). They found that the dominant prey species were forage species like pandalid shrimp, capelin (Mallotus villosus), and walleye pollock (Theragra chalcogramma). The shrimp fishery in Pavlof Bay began in 1968 and closed in 1980 because of low shrimp abundance (Ruccio and Worton1). Survey data indicate that, during the period between 1972 and 1997, the abundance of forage species such as pandalid shrimp and capelin declined and higher trophic-level groundfish such as Pacific cod increased. There is a general recognition that a long-term ocean climate shift in the Gulf of Alaska has been partially responsible for the observed reorganization of the community structure (Anderson and Piatt, 1999).
Resumo:
The population structure of walleye pollock (Theragra chalcogramma) in the northeastern Pacific Ocean remains unknown. We examined elemental signatures in the otoliths of larval and juvenile pollock from locations in the Bering Sea and Gulf of Alaska to determine if there were significant geographic variations in otolith composition that may be used as natural tags of population affinities. Otoliths were assayed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Elements measured at the nucleus of otoliths by EPMA and laser ablation ICP-MS differed significantly among locations. However, geographic groupings identified by a multivariate statistical approach from EPMA and ICP-MS were dissimilar, indicating that the elements assayed by each technique were controlled by separate depositional processes within the endolymph. Elemental profiles across the pollock otoliths were generally consistent at distances up to 100 μm from the nucleus. At distances beyond 100 μm, profiles varied significantly but were remarkably consistent among individuals collected at each location. These data may indicate that larvae from various spawning locations are encountering water masses with differing physicochemical properties through their larval lives, and at approximately the same time. Although our results are promising, we require a better understanding of the mechanisms controlling otolith chemistry before it will be possible to reconstruct dispersal pathways of larval pollock based on probe-based analyses of otolith geochemistry. Elemental signatures in otoliths of pollock may allow for the delineation of fine-scale population structure in pollock that has yet to be consistently revealed by using population genetic approaches.
Resumo:
Fishery-independent estimates of spawning biomass (BSP) of the Pacific sardine (Sardinops sagax) on the south and lower west coasts of Western Australia (WA) were obtained periodically between 1991 and 1999 by using the daily egg production method (DEPM). Ichthyoplankton data collected during these surveys, specifically the presence or absence of S. sagax eggs, were used to investigate trends in the spawning area of S. sagax within each of four regions. The expectation was that trends in BSP and spawning area were positively related. With the DEPM model, estimates of BSP will change proportionally with spawning area if all other variables remain constant. The proportion of positive stations (PPS), i.e., stations with nonzero egg counts — an objective estimator of spawning area — was high for all south coast regions during the early 1990s (a period when the estimated BSP was also high) and then decreased after the mid-1990s. There was a decrease in PPS from the mid-1990s to 1999. The particularly low estimates in 1999 followed a severe epidemic mass mortality of S. sagax throughout their range across southern Australia. Deviations from the expected relationship between BSP and PPS were used to identify uncertainty around estimates of BSP. Because estimation of spawning area is subject to less sampling bias than estimation of BSP, the deviation in the relation between the two provides an objective basis for adjusting some estimates of the latter. Such an approach is particularly useful for fisheries management purposes when sampling problems are suspected to be present. The analysis of PPS undertaken from the same set of samples from which the DEPM estimate is derived will help provide information for stock assessments and for the management of purse-seine fisheries.
Resumo:
The stomach contents of the minimal armhook squid (Berryteuthis anonychus) were examined for 338 specimens captured in the northeast Pacific during May 1999. The specimens were collected at seven stations between 145−165°W and 39−49°N and ranged in mantle length from 10.3 to 102.2 mm. Their diet comprised seven major prey groups (copepods, chaetognaths, amphipods, euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) and was dominated by copepods and chaetognaths. Copepod prey comprised four genera, and 86% by number of the copepods were from the genus Neocalanus. Neocalanus cristatus was the most abundant prey taxa, composing 50% by mass and 35% by number of the total diet. Parasagitta elegans (Chaetognatha) occurred in more stomachs (47%) than any other prey taxon. Amphipods occurred in 19% of the stomachs but composed only 5% by number and 3% by mass of the total prey consumed. The four remaining prey groups (euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) together composed <2% by mass and <1% by number of the diet. There was no major change in the diet through the size range of squid examined and no evidence of cannibalism or predation on other cephalopod species.
Resumo:
The use of parasites as indicators of the stock structure of Pacific halibut (Hippoglossus stenolepis) in the northeast Pacific was investigated by using 328 adult (>55 cm fork length) halibut from 15 composite localities ranging from northern California to the northern Bering Sea and 96 juvenile (10–55 cm) halibut from five localities ranging from the northern Queen Charlotte Islands to the Bering Sea. Counts of eight selected parasite species (the juvenile acanthocephalans Corynosoma strumosum and C. villosum, the metacestode Nybelinia surmenicola, the digenean metacercaria Otodistomum sp., and the larval nematodes Anisakis simplex, Pseudoterranova decipiens, Contracaecum sp., and Spirurid gen. sp.) that produce infections of long duration, do not multiply in the host, and that have a relatively high abundance in at least one geographic locality were subjected to discriminant function analysis. Juvenile Pacific halibut showed no separation and, even though they were not heavily infected with parasites, the analysis suggested that juveniles could be a mixed stock. Three groups of adults were identified: fish from California to the southern Queen Charlotte Islands, those from the northern Queen Charlotte Islands to the central Bering Sea, and those from the central and north-ern Bering Sea. These groups suggest that the single stock concept be more thoroughly evaluated.
Resumo:
The Pacific threadfin (Polydactylus sexfilis) is considered one of the premier Hawaiian food fishes but even with catch limits, seasonal closures, and size limits, catches have declined dramatically since the 1960s. It was identified as the top candidate species for stock enhancement in Hawaii, based on the decline in stocks, high market value, and importance of the fishery. In the stock enhancement program for Pacific threadfin, over 430,000 fingerlings of various sizes were implanted with coded wire tags and released in nursery habitats along the windward coast of Oahu between 1993 and 1998. Because few Pacific threadfin were present in creel surveys conducted between 1994 and 1998, Oahu fishermen were offered a $10 reward for each threadfin that was caught (for both hatchery-reared and wild fish). A total of 1882 Pacific threadfin were recovered from the reward program between March 1998 and May 1999, including 163 hatchery-reared fish, an overall contribution of 8.7% to the fishery. Hatchery-reared fish accounted for as high as 71% of returns in the release areas. Hatchery-reared fish were recovered on average 11.5 km (SD=9.8 km) from the release site, although some had moved as far away as 42 km. Average age for recovered hatchery-reared fish was 495 days; the oldest was 1021 days. Cultured Pacific threadfin juveniles survived and recruited successfully to the recreational fishery, accounting for 10% of fishermen’s catches on the windward side of Oahu. Recruitment to the fishery was highest for the 1997 release year; few juveniles from earlier releases were observed. Presence of a few large, fully developed females in the recreational fishery suggested that hatchery-reared fish can survive, grow, and reproductively contribute to the population. Implementation of an enhancement program that is focused on juveniles and perhaps large females, as part of an integrated fishery management strategy, could speed the recovery of this fish population.
Resumo:
From 1978 to 1988, approximately 71,000 spiny dogfish (Squalus acanthias) were tagged off the west coast of Canada. This program is the most extensive tagging study conducted for a shark species. Twelve years after the last year of tagging, recaptured tagged spiny dogfish are still being reported. As of December 2000, 2940 tagged fish (4.1%) have been recaptured. Spiny dogfish were tagged in three major areas: Strait of Georgia, west coast Vancouver Island, and northern British Columbia waters. Generally, spiny dogfish were recaptured close to their release site; however, extensive migrations (up to 7000 km) did occur. Migration rates varied across release areas. Spiny dogfish tagged in the Strait of Georgia underwent the least extensive movement; only 10–14% of the recaptures occurred outside the strait. Spiny dogfish tagged off the west coast of Vancouver Island or in northern British Columbia waters underwent more extensive movement; approximately 49–80% of the tagged spiny dogfish recaptured outside of the release areas. Spiny dogfish from all three release areas were recaptured off the west coast of United States and Alaska. Most impressive are the recaptures of tagged spiny dogfish off the coast of Japan. Over 30 spiny dog-fish were recaptured near Japan, most of which originated off the west coast of Vancouver Island or from northern British Columbia waters.
Resumo:
We investigated the migration and behavior of young Pacific bluefin tuna (Thunnus orientalis) using archival tags that measure environmental variables, record them in memory, and estimate daily geographical locations using measured light levels. Swimming depth, ambient water temperature, and feeding are described in a companion paper. Errors of the tag location estimates that could be checked were –0.54° ±0.75° (mean ±SD) in longitude and –0.12° ±3.06° in latitude. Latitude, estimated automatically by the tag, was problematic, but latitude, estimated by comparing recorded sea-surface temperatures with a map of sea-surface temperature, was satisfactory. We concluded that the archival tag is a reliable tool for estimating location on a scale of about one degree, which is sufficient for a bluefin tuna migration study. After release, tagged fish showed a normal swimming behavioral pattern within one day and normal feeding frequency within one month. In addition, fish with an archival tag maintained weight-at-length similar to that of wild fish; however, their growth rate was less than that of wild fish. Of 166 fish released in the East China Sea with implanted archival tags, 30 were recovered, including one that migrated across the Pacific Ocean. Migration of young Pacific bluefin tuna appears to consist of two phases: a residency phase comprising more than 80% of all days, and a traveling phase. An individual young Pacific bluefin tuna was observed to cover 7600 km in one traveling phase that lasted more than two months (part of this phase was a trans-Pacific migration completed within two months). Many features of behavior in the traveling phase were similar to those in the residency phase; however the temperature difference between viscera and ambient temperature was larger, feeding was slightly more frequent, and dives to deeper water were more frequent.
Resumo:
We investigated the migration and behavior of young Pacific Bluefin tuna (Thunnus orientalis) using archival tags. The archival tag measures environmental variables, records them in its memory, and estimates daily geographical locations based on measured light levels. Of 166 archival tags implanted in Pacific bluefin tuna that were released at the northeastern end of the East China Sea from 1995 to 1997, 30 tags were recovered, including one from a fish that migrated across the Pacific. This article describes swimming depth, ambient water temperature, and feeding frequency of young Pacific bluefin tuna based on retrieved data. Tag performance, effect of the tag on the fish, and horizontal movements of the species are described in another paper. Young Pacific bluefin tuna swim mainly in the mixed layer, usually near the sea surface, and swim in deeper water in daytime than at nighttime. They also exhibit a pattern of depth changes, corresponding to sunrise and sunset, apparently to avoid a specific low light level. The archival tags recorded temperature changes in viscera that appear to be caused by feeding, and those changes indicate that young Pacific bluefin tuna commonly feed at dawn and in the daytime, but rarely at dusk or at night. Water temperature restricts their distribution, as indicated by changes in their vertical distribution with the seasonal change in depth of the thermocline and by the fact that their horizontal distribution is in most cases confined to water in the temperature range of 14−20°C.
Resumo:
Percophids are a family of small marine benthic fishes common over soft bottoms from inshore to the outer slopes in tropical to temperate regions of the Atlantic and in the Indo-West and southeast Pacific (Reader and Neira, 1998; Okiyama, 2000). Five species belonging to four genera have been recorded around the Salas y Gómez Ridge in the southeast Pacific, all of which are endemic to the area except for Chrionema chryseres, a species which also occurs off the Hawaiian Islands and Japan (Parin, 1985, 1990; Parin et al., 1997). Of these five species, larval stages have been described only for Osopsaron karlik and Chrionema pallidum (Belyanina 1989, 1990).
Resumo:
Stock structure of eastern Pacific yellowfin tuna was investigated by analyzing allozymes and random amplified polymorphic DNAs (RAPDs) from 10 samples of 20–30 individuals each, collected between 1994 and 1996 from fishing vessels operating in the Inter-American Tropical Tuna Commission (IATTC) yellowfin regulatory area (CYRA). Allozyme analysis resolved 28 loci, eight of which were polymorphic under the 0.95 criterion: Aat-S*, Glud, Gpi-F*, Gpi-S*, La, Lgg, Pap-F*, and 6-Pgd, resulting in a mean heterozygosity over all allozyme loci of H = 0.052. Four polymorphic RAPD loci were selected for analysis, resulting in a mean heterozygosity of H = 0.43. Eight of 45 pairwise comparisons of allozyme allele frequencies among the ten samples showed significant differences after correction for multiple testing (P<0.0001), all of which involved comparisons with the Gulf of California sample. Confirmation of this signal of population structure would have management implications. No significant divergence in RAPD allele frequencies was observed among samples. Weir and Cockerham θ estimated for allozyme loci (θ=0.048; P<0.05) and RAPD loci (θ=0.030; P>0.05) revealed little population structure among samples. Mantel tests demonstrated that the genetic relationships among samples did not correspond to an isolation-by-distance model for either class of marker. Four of eight comparisons of coastal and offshore samples revealed differences of allele frequencies at the Gpi-F* locus (P<0.05), although none of these differences was significant after correction for multiple testing (P>0.001). Results are consistent with the hypothesis that the CYRA yellowfin tuna samples comprise a single genetic stock, although gene flow appears to be greater among coastal samples than between coastal and offshore samples.
Resumo:
An ecosystem approach to fisheries management requires an understanding of the impact of predatory fishes on the underlying prey resources. Defining trophic connections and measuring rates of food consumption by apex predators lays the groundwork for gaining insight into the role of predators and commercial fisheries in influencing food web structure and ecosystem dynamics.We analyzed the stomach contents of 545 common dolphinfish (Coryphaena hippurus) sampled from 74 sets of tuna purse-seine vessels fishing in the eastern Pacific Ocean (EPO) over a 22-month period. Stomach fullness of these dolphinfish and digestion state of the prey indicated that diel feeding periodicity varied by area and may be related to the digestibility and energy content of the prey. Common dolphinfish in the EPO appear to feed at night, as well as during the daytime. We analyzed prey importance by weight, numbers, and frequency of occurrence for five regions of the EPO. Prey importance varied by area. Flyingfishes, epipelagic cephalopods, tetraodontiform fishes, several mesopelagic fishes, Auxis spp., and gempylid fishes predominated in the diet. Ratios of prey length to predator length ranged from 0.014 to 0.720. Consumption-rate estimates averaged 5.6% of body weight per day. Stratified by sex, area, and length class, daily rations ranged up to 9.6% for large males and up to 19.8% for small dolphinfish in the east area (0–15°N, 111°W–coastline). Because common dolphinfish exert substantial predation pressure on several important prey groups, we concluded that their feeding ecology provides important clues to the pelagic food web and ecosystem structure in the EPO.
Resumo:
Ninety-six bigeye tuna (88– 134 cm fork length) were caught and released with implanted archival (electronic data storage) tags near fish-aggregating devices (FADs) in the equatorial eastern Pacific Ocean (EPO) during April 2000. Twenty-nine fish were recaptured, and the data from twenty-seven tags were successfully downloaded and processed. Time at liberty ranged from 8 to 446 days, and data for 23 fish at liberty for 30 days or more are presented. The accuracy in geolocation estimates, derived from the light level data, is about 2 degrees in latitude and 0.5 degrees in longitude in this region. The movement paths derived from the filtered geolocation estimates indicated that none of the fish traveled west of 110°W during the period between release and recapture. The null hypothesis that the movement path is random was rejected in 17 of the 22 statistical tests of the observed movement paths. The estimated mean velocity was 117 km/d. The fish exhibited occasional deep-diving behavior, and some dives exceeded 1000 m where temperatures were less than 3°C. Evaluations of timed depth records, resulted in the discrimination of three distinct behaviors: 54.3% of all days were classified as unassociated (with a floating object) type-1 behavior, 27.7% as unassociated type-2 behavior, and 18.7% as behavior associated with a floating object. The mean residence time at floating objects was 3.1 d. Data sets separated into day and night were used to evaluate diel differences in behavior and habitat selection. When the fish were exhibiting unassociated type-1 behavior (diel vertical migrations), they were mostly at depths of less than 50 m (within the mixed layer) throughout the night, and during the day between 200 and 300 m and 13° and 14°C. They shifted their average depths in conjunction with dawn and dusk events, presumably tracking the deep-scattering layer as a foraging strategy. There were also observed changes in the average nighttime depth distributions of the fish in relation to moon phase.