909 resultados para PICTORIAL DEPTH CUES
Resumo:
Retinal blurring resulting from the human eye's depth of focus has been shown to assist visual perception. Infinite focal depth within stereoscopically displayed virtual environments may cause undesirable effects, for instance, objects positioned at a distance in front of or behind the observer's fixation point will be perceived in sharp focus with large disparities thereby causing diplopia. Although published research on incorporation of synthetically generated Depth of Field (DoF) suggests that this might act as an enhancement to perceived image quality, no quantitative testimonies of perceptional performance gains exist. This may be due to the difficulty of dynamic generation of synthetic DoF where focal distance is actively linked to fixation distance. In this paper, such a system is described. A desktop stereographic display is used to project a virtual scene in which synthetically generated DoF is actively controlled from vergence-derived distance. A performance evaluation experiment on this system which involved subjects carrying out observations in a spatially complex virtual environment was undertaken. The virtual environment consisted of components interconnected by pipes on a distractive background. The subject was tasked with making an observation based on the connectivity of the components. The effects of focal depth variation in static and actively controlled focal distance conditions were investigated. The results and analysis are presented which show that performance gains may be achieved by addition of synthetic DoF. The merits of the application of synthetic DoF are discussed.
Resumo:
In this study we quantify the relationship between the aerosol optical depth increase from a volcanic eruption and the severity of the subsequent surface temperature decrease. This investigation is made by simulating 10 different sizes of eruption in a global circulation model (GCM) by changing stratospheric sulfate aerosol optical depth at each time step. The sizes of the simulated eruptions range from Pinatubo‐sized up to the magnitude of supervolcanic eruptions around 100 times the size of Pinatubo. From these simulations we find that there is a smooth monotonic relationship between the global mean maximum aerosol optical depth anomaly and the global mean temperature anomaly and we derive a simple mathematical expression which fits this relationship well. We also construct similar relationships between global mean aerosol optical depth and the temperature anomaly at every individual model grid box to produce global maps of best‐fit coefficients and fit residuals. These maps are used with caution to find the eruption size at which a local temperature anomaly is clearly distinct from the local natural variability and to approximate the temperature anomalies which the model may simulate following a Tambora‐sized eruption. To our knowledge, this is the first study which quantifies the relationship between aerosol optical depth and resulting temperature anomalies in a simple way, using the wealth of data that is available from GCM simulations.
Resumo:
We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for MSG SEVIRI to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 µm assuming a fixed erosol optical depth of 0.5 by 10–15 %, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution f the aerosol and find that this is unimportant in determining simulated radiance at 0.55 µm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol dataset to correctly identify continental aerosol outflow from the African continent and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow, and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2–1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50 - 70 %.
An evaluation of boundary-layer depth, inversion and entrainment parameters by large-eddy simulation
Resumo:
A remote haploscopic video refractor was used to assess vergence and accommodation responses in a group of 32 emmetropic, orthophoric, symptom free, young adults naïve to vision experiments in a minimally instructed setting. Picture targets were presented at four positions between 2 m and 33 cm. Blur, disparity and looming cues were presented in combination or separately to asses their contributions to the total near response in a within-subjects design. Response gain for both vergence and accommodation reduced markedly whenever disparity was excluded, with much smaller effects when blur and proximity were excluded. Despite the clinical homogeneity of the participant group there were also some individual differences.
Resumo:
A rain shelter experiment was conducted in a 90-year-old Norway spruce stand, in the Kysucké Beskydy Mts (Slovakia). Three rain shelters were constructed in the stand to prevent the rainfall from reaching the soil and to reduce water availability in the rhizosphere. Fine root biomass and necromass were repeatedly measured throughout a growing season by soil coring. We established the quantities of fine root biomass (live) and necromass (dead) at soil depths of 0-5, 5-15, 15-25, and 25-35 cm. Significant differences in soil moisture contents between control and drought plots were found in the top 15 cm of soil after 20 weeks of rainfall manipulation (lasting from early June to late October). Our observations show that even relatively light drought decreased total fine root biomass from 272.0 to 242.8 g m-2 and increased the amount of necromass from 79.2 to 101.2 g m-2 in the top 35 cm of soil. Very fine roots, i.e. those with diameter up to 1 mm, were more affected than total fine roots defined as 0-2 mm. The effect of reduced water availability was depth-specific, as a result we observed a modification of vertical distribution of fine roots. More roots in drought treatment were produced in the wetter soil horizons at 25-35 cm depth than at the surface. We conclude that fine and very fine root systems of Norway spruce have the capacity to re-allocate resources to roots at different depths in response to environmental signals, resulting in changes in necromass to biomass ratio.
Resumo:
Ground-based aerosol optical depth (AOD) climatologies at three high-altitude sites in Switzerland (Jungfraujoch and Davos) and Southern Germany (Hohenpeissenberg) are updated and re-calibrated for the period 1995 – 2010. In addition, AOD time-series are augmented with previously unreported data, and are homogenized for the first time. Trend analysis revealed weak AOD trends (λ = 500 nm) at Jungfraujoch (JFJ; +0.007 decade-1), Davos (DAV; +0.002 decade-1) and Hohenpeissenberg (HPB; -0.011 decade-1) where the JFJ and HPB trends were statistically significant at the 95% and 90% confidence levels. However, a linear trend for the JFJ 1995 – 2005 period was found to be more appropriate than for 1995 – 2010 due to the influence of stratospheric AOD which gave a trend -0.003 decade-1 (significant at 95% level). When correcting for a recently available stratospheric AOD time-series, accounting for Pinatubo (1991) and more recent volcanic eruptions, the 1995 – 2010 AOD trends decreased slightly at DAV and HPB but remained weak at +0.000 decade-1 and -0.013 decade-1 (significant at 95% level). The JFJ 1995 – 2005 AOD time-series similarly decreased to -0.003 decade-1 (significant at 95% level). We conclude that despite a more detailed re40 analysis of these three time-series, which have been extended by five years to the end of 2010, a significant decrease in AOD at these three high-altitude sites has still not been observed.
Resumo:
This paper evaluates the relationship between the cloud modification factor (CMF) in the ultraviolet erythe- mal range and the cloud optical depth (COD) retrieved from the Aerosol Robotic Network (AERONET) "cloud mode" algorithm under overcast cloudy conditions (confirmed with sky images) at Granada, Spain, mainly for non-precipitating, overcast and relatively homogenous water clouds. Empirical CMF showed a clear exponential dependence on experimental COD values, decreasing approximately from 0.7 for COD=10 to 0.25 for COD=50. In addition, these COD measurements were used as input in the LibRadtran radia tive transfer code allowing the simulation of CMF values for the selected overcast cases. The modeled CMF exhibited a dependence on COD similar to the empirical CMF, but modeled values present a strong underestimation with respect to the empirical factors (mean bias of 22 %). To explain this high bias, an exhaustive comparison between modeled and experimental UV erythemal irradiance (UVER) data was performed. The comparison revealed that the radiative transfer simulations were 8 % higher than the observations for clear-sky conditions. The rest of the bias (~14 %) may be attributed to the substantial underestimation of modeled UVER with respect to experimental UVER under overcast conditions, although the correlation between both dataset was high (R2 ~ 0.93). A sensitive test showed that the main reason responsible for that underestimation is the experimental AERONET COD used as input in the simulations, which has been retrieved from zenith radiances in the visible range. In this sense, effective COD in the erythemal interval were derived from an iteration procedure based on searching the best match between modeled and experimental UVER values for each selected overcast case. These effective COD values were smaller than AERONET COD data in about 80 % of the overcast cases with a mean relative difference of 22 %.
Resumo:
Leaders across companies initiate and implement change and thus are crucial for successful organizations. This study takes a competency perspective on leaders and investigates the competencies leaders show to facilitate effective change. The article explores the content of the construct of leaders’ change competency and examines its antecedents and effects. We conducted a case study in a German tourism company undergoing a major change process. The study identified (a) distinct content facets regarding the construct of leaders’ change competency along its two dimensions of leaders’ readiness for change and leaders’ change ability; (b) the construct’s antecedents, specifically contextual factors, leaders’ competency potentials, and attitudes toward change; and (c) beneficial effects of leaders’ change competency. The study ends with implications for research and leadership practice as well as suggestions for future studies on leaders’ change competency.
Resumo:
Aim. To describe preliminary findings of how the profile of the use of blur, disparity and proximal cues varies between non-strabismic groups and those with different types of esotropia. Design. Case control study Methodology. A remote haploscopic photorefractor measured simultaneous convergence and accommodation to a range of targets containing all combinations of binocular disparity, blur and proximal (looming) cues. 13 constant esotropes, 16 fully accommodative esotropes, and 8 convergence excess esotropes were compared with age and refractive error matched controls, and 27 young adult emmetropic controls. All wore full refractive correction if not emmetropic. Response AC/A and CA/C ratios were also assessed. Results. Cue use differed between the groups. Even esotropes with constant suppression and no binocular vision (BV) responded to disparity in cues. The constant esotropes with weak BV showed trends for more stable responses and better vergence and accommodation than those without any BV. The accommodative esotropes made less use of disparity cues to drive accommodation (p=0.04) and more use of blur to drive vergence (p=0.008) than controls. All esotropic groups failed to show the strong bias for better responses to disparity cues found in the controls, with convergence excess esotropes favoring blur cues. AC/A and CA/C ratios existed in an inverse relationship in the different groups. Accommodative lag of >1.0D at 33cm was common (46%) in the pooled esotropia groups compared with 11% in typical children (p=0.05). Conclusion. Esotropic children use near cues differently from matched non-esotropic children in ways characteristic to their deviations. Relatively higher weighting for blur cues was found in accommodative esotropia compared to matched controls.
Resumo:
Purpose. This symposium contribution presents research that shows that disparity cues within a near stimulus drive not only vergence but also most of the accommodation. Be-cause blur is a weaker cue, accommodative convergence is therefore only of minor significance for most individuals. Methods. The Infant Vision Laboratory at the University of Reading uses a Power Ref II photorefractor to collect simultaneous accommodation and convergence data from participants fixating targets moving in depth. By manipulating target characteristics, we have been able to test how blur, disparity and proximal cues each contribute to driving responses. Results. Results from a series of studies over the past 12 years have contributed to a coherent body of evidence suggesting that disparity cues override blur and proximity cues in most individuals. Some strabismic patients do use blur as a more strongly weighted cue, and this strategy could contribute to their symptoms, clinical characteristics and response to treatment. Conclusion. Although convergence accommodation is extremely difficult to measure clinically, clinicians should be aware of its importance in binocular vision and strabismus. Although CA/C relationships typically seem more important than AC/A, bo th only partly explain the interplay between convergence and accommodation.