848 resultados para PHOTONIC CRYSTAL FIBER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined high-resolution crystal structures of the complexes of HLA-A2 molecules with two modified immunodominant peptides from the melanoma tumor-associated protein Melan-A/Melanoma Ag recognized by T cells-1. The two peptides, a decamer and nonamer with overlapping sequences (ELAGIGILTV and ALGIGILTV), are modified in the second residue to increase their affinity for HLA-A2. The modified decamer is more immunogenic than the natural peptide and a candidate for peptide-based melanoma immunotherapy. The crystal structures at 1.8 and 2.15 A resolution define the differences in binding modes of the modified peptides, including different clusters of water molecules that appear to stabilize the peptide-HLA interaction. The structures suggest both how the wild-type peptides would bind and how three categories of cytotoxic T lymphocytes with differing fine specificity might recognize the two peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition αc which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above αc, however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=92. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal size distributions (CSD) of periclase in contact metamorphic dolomite marbles are presented for two profiles near the Cima Uzza summit in the southern Adamello Massif (Italy). The database was combined with geochemical and petrological information to deduce the controls on the periclase-forming reaction. The contact metamorphic dolomite marbles are exposed at the contact of mafic intrusive rocks and are partially surrounded by them. Brucite is retrograde and pseudomorphs spherical periclase crystals. Prograde periclase growth is the consequence of limited infiltration of water-rich fluid at T near 605C. Stable isotope data show depletion in (13)C and (18)O over a narrow region (40 cm) near the magmatic contact, whereas the periclase-forming reaction front extends up to 4 m from the contact. CSD analyses along the two profiles show that the median grain size of the periclase crystals does not change, but that there is a progressively greater distribution of grain sizes, including a greater proportion of larger grains, with increasing distance from the contact. A qualitative model, based on the textural and geochemical data, attributes these variations in grain size to changing reaction affinities along a kinetically dispersed infiltration front. This study highlights the need to invoke disequilibrium processes for metamorphic mineral growth and expands the use of CSDs to systems of mineral formation driven by fluid infiltration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber laser for materials processing have undergone a rapid development in the pastseveral years. As fiber laser provides a combination of high beam quality and awavelength that is easily absorbed by metal surfaces, the named future laser isexpected to challenge the CO2 and Nd:YAG lasers in the area of metal cutting. This thesis studied the performance of fiber laser cutting mild steel. In the literature review part, it introduced the laser cutting principle and the principle of fiber laser including the newest development of fiber laser cuttingtechnology. Because the fiber laser cutting mild steel is a very young technology, a preliminary test was made in order to investigate effect of the cutting parameters on cut quality. Then the formal fiber laser cutting experiment was madeby using 3 mm thickness S355 steel with oxygen as assistant gas. The experimentwas focused on the cut quality with maximum cutting speed and minimum oxygen gas pressure. And the cut quality is mainly decided by the kerf width, perpendicularity tolerance, surface roughness and striation patterns. After analysis the cutting result, several conclusions were made. Although the best result got in the experiment is not perfect as predicted, the whole result of the test can be accepted. Compared with CO2 laser, a higher cutting speed was achieved by fiber laser with very low oxygen gas pressure. A further improvement about the cutting quality might be possible by proper selection of process parameters. And in order to investigate the cutting performance more clearly, a future study about cutting different thickness mild steel and different shape was recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thanks to the continuous progress made in recent years, medical imaging has become an important tool in the diagnosis of various pathologies. In particular, magnetic resonance imaging (MRI) permits to obtain images with a remarkably high resolution without the use of ionizing radiation and is consequently widely applied for a broad range of conditions in all parts of the body. Contrast agents are used in MRI to improve tissue discrimination. Different categories of contrast agents are clinically available, the most widely used being gadolinium chelates. One can distinguish between extracellular gadolinium chelates such as Gd-DTPA, and hepatobiliary gadolinium chelates such as Gd-BOPTA. The latter are able to enter hepatocytes from where they are partially excreted into the bile to an extent dependent on the contrast agent and animal species. Due to this property, hepatobiliary contrast agents are particularly interesting for the MRI of the liver. Actually, a change in signal intensity can result from a change in transport functions signaling the presence of impaired hepatocytes, e.g. in the case of focal (like cancer) or diffuse (like cirrhosis) liver diseases. Although the excretion mechanism into the bile is well known, the uptake mechanisms of hepatobiliary contrast agents into hepatocytes are still not completely understood and several hypotheses have been proposed. As a good knowledge of these transport mechanisms is required to allow an efficient diagnosis by MRI of the functional state of the liver, more fundamental research is needed and an efficient MRI compatible in vitro model would be an asset. So far, most data concerning these transport mechanisms have been obtained by MRI with in vivo models or by a method of detection other than MRI with cellular or sub-cellular models. Actually, no in vitro model is currently available for the study and quantification of contrast agents by MRI notably because high cellular densities are needed to allow detection, and no metallic devices can be used inside the magnet room, which is incompatible with most tissue or cell cultures that require controlled temperature and oxygenation. The aim of this thesis is thus to develop an MRI compatible in vitro cellular model to study the transport of hepatobiliary contrast agents, in particular Gd-BOPTA, into hepatocytes directly by MRI. A better understanding of this transport and especially of its modification in case of hepatic disorder could permit in a second step to extrapolate this knowledge to humans and to use the kinetics of hepatobiliary contrast agents as a tool for the diagnosis of hepatic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber damages comprise fiber deformations, characterized as fiber curl, kink, dislocations and strength losses as well as some yet unidentified factors. This recently discovered phenomenon is especially evident in mill scale kraftpulps. Laboratory produced pulps tend to have less damages and superior strength properties compared to those produced in pulp mills. Generally fiber damages pose a problem in the production of reinforcement pulp because they tend to decrease the ability of fibers to transmit load. Previous studies on fiber damage have shown that most of the fiber damages occur during brown stock processing starting from cooking and discharging. This literature review gives an overall picture on fiber damages occurring during softwood kraft pulp production with an emphasis on the oxygen delignification stage. In addition the oxygen delignification stage itself is described in more detailed extent in order to understand the mechanisms behind the delignification and fiber damaging effect. The literature available on this subject is unfortunately quite contradictory and implicates a lotof different terms. Only a few studies have been published which help to understand the nature of fiber damages. For that reason the knowledge presented in this work is not only based on previous studies but also on research scientist and mill staff interviews.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raaka-ainekustannusten minimoimiseksi hienopaperin valmistajat pyrkivät jatkuvasti vähentämään massan havuselluosuutta ja lisäämään paperin täyteainepitoisuutta. PCC:n käyttö hienopaperin täyteaineena on kasvanut viimeisen kymmenen vuoden aikana voimakkaasti. PCC:n etuna on sen joustava valmistusprosessi, jonka olosuhteita säätelemällä voidaan valmistaa hyvin erilaisia tuotteita. PCC:n ominaisuudet, kuten partikkelikoko ja kidemuoto vaikuttavat merkittävästi paperin reologisiin ominaisuuksiin. Täyteaineen vaikutus paperin lujuusominaisuuksiin riippuu oleellisesti siitä, miten täyteaine sijoittuu kuituverkostossa. Lisäksi paperikoneen ajettavuuden turvaamiseksi täyteaineretention tulisi olla riittävän korkealla tasolla. Täyteaineen retentoituminen on hyvin riippuvainen kuitumateriaalin ja täyteaineen ominaisuuksista. Täyteainepitoisuuden lisääminen ja havusellun vähentäminen heikentävät hienopaperin reologisia ominaisuuksia ja vaikuttavat negatiivisesti paperikoneen ajettavuuteen. Varsinkin rainan siirto avoimella viennillä puristinosalta kuivatusosalle voi muodostua ajettavuuden kannalta kriittiseksi kohdaksi. Tämän vuoksi on tärkeää tuntea irrotustapahtumaan ja rainan kireyteen vaikuttavat tekijät. Märän rainan lujuuskäyttäytymistä voidaan tutkia esim. laboratorioarkeista tehtävillä vetolujuus- ja jännitysrelaksaatiomittauksilla. Työn kokeellisessa osassa tutkittiin kahden erityyppisen PCC-täyteaineen vaikutusta hienopaperin vetolujuus- ja relaksaatiokäyttäytymiseen nopeassa vetokuormituksessa. Täyteainepitoisuuden kasvaessa sekä märän että kuivan paperin vetolujuus ja relaksaatiokireys heikkenivät voimakkaasti. Täyteaine myös vähensi havuselluosuuden vaikutusta näihin ominaisuuksiin. PCC:n ominaisuuksilla voitiin hieman vaikuttaa hienopaperin reologisiin ominaisuuksiin, joskin niiden kannalta edullisempi täyteaine antoi paperille huonommat optiset ominaisuudet. Kuiva-ainepitoisuuden kasvaessa paperin vetolujuus ja relaksaatiokireys paranivat eksponentiaalisesti. Tämän perusteella täyteainetyypin vaikutus vedenpoistoon on paperin reologisten ominaisuuksien kannalta tärkeä tekijä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the behavior of complex information in the Fresnel domain, taking into account the limited capability to display complex values of liquid crystal devices when they are used as holographic displays. To do this analysis we study the reconstruction of Fresnel holograms at several distances using the different parts of the complex distribution. We also use the information adjusted with a method that combines two configurations of the devices in an adding architecture. The results of the error analysis show different behavior for the reconstructions when using the different methods. Simulated and experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to study factors that explain the bilateral fiber trade flows. This is done by analyzing bilateral trade flows during 1990-2006. It will be studied also, whether there are differences between fiber types. This thesis uses a gravity model approach to study the trade flows. Gravity model is mostly used to study the aggregate data between trading countries. In this thesis the gravity model is applied to single fibers. This model is then applied to panel data set. Results from the regression show clearly that there are benefits in studying different fibers in separate. The effects differ considerably from each other. Furthermore, this thesis speaks for the existence of Linder’s effect in certain fiber types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis theoretical and technological aspects of fiber Bragg gratings (FBG) are considered. The fabrication of uniform and chirped fiber Bragg gratings using phase mask technique has been exploited throughout this study. Different requires of FBG inscription were considered and implemented experimentally to find economical and effective procedure. The hydrogen loading was used as a method for enhancement the photosensitivity of the fiber. The minimum loading time for uniform and chirped fiber Bragg gratings was determined as 3 days and 7 days at T = 50°C and hydrogen pressure 140 bar, respectively. The post-inscription annealing was considered to avoid excess losses induced by the hydrogen. The wavelength evolution during annealing was measured. The strain and temperature sensor application of FBG was considered. The wavelength shifts caused by tension and temperature were studied for both uniform and chirp fiber Bragg gratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.