990 resultados para PHOSPHOLIPID TRANSFER PROTEIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foaming during fermentation reduces the efficiency of the process leading to increased costs and reduced productivity. Foaming can be overcome by the use of chemical antifoaming agents, however their influence upon the growth of organisms and protein yield is poorly understood. The objective of this work was to evaluate the effects of different antifoams on recombinant protein production. Antifoam A, Antifoam C, J673A, P2000 and SB2121 were tested at different concentrations for their effect on the growth characteristics of Pichia pastoris producing GFP, EPO and A2aR and the yield of protein in shake flasks over 48 h. All antifoams tested increased the total GFP in the shake flasks compared to controls, at higher concentrations than would normally be used for defoaming purposes. The highest yield was achieved by adding 1 % P2000 which nearly doubled the total yield followed by 1 % SB2121, 1 % J673A, 0.6 % Antifoam A and lastly 0.8 % Antifoam C. The antifoams had a detrimental effect upon the production of EPO and A2aR in shake flasks, suggesting that their effects may be protein specific. The mechanisms of action of the antifoams was investigated and suggested that although the volumetric mass oxygen transfer coefficient (kLa) was influenced by the agents, their effect upon the concentration of dissolved oxygen did not contribute to the changes in growth or recombinant protein yield. Findings in small scale also suggested that antifoams of different compositions such as silicone polymers and alcoxylated fatty acid esters may influence growth characteristics of host organisms and the ability of the cells to secrete recombinant protein, indirectly affecting the protein yield. Upon scale-up, the concentration effects of the antifoams upon GFP yield in bioreactors was reversed, with lower concentrations producing a higher yield. These data suggest that antifoam can affect cells in a multifactorial manner and highlights the importance of screening for optimum antifoam types and concentrations for each bioprocesses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFN? responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HOCl-modified low-density lipoprotein (LDL) has proinflammatory effects, including induction of inflammatory cytokine production, leukocyte adhesion, and ROS generation, but the components responsible for these effects are not completely understood. HOCl and the myeloperoxidase-H2O2-halide system can modify both protein and lipid moieties of LDL and react with unsaturated phospholipids to form chlorohydrins. We investigated the proinflammatory effects of 1-stearoyl-2-oleoyl-sn-3-glycerophosphocholine (SOPC) chlorohydrin on artery segments and spleen-derived leukocytes from ApoE-/- and C57 Bl/6 mice. Treatment of ApoE-/- artery segments with SOPC chlorohydrin, but not unmodified SOPC, caused increased leukocyte-arterial adhesion in a time- and concentration-dependent manner. This could be prevented by pretreatment of the artery with P-selectin or ICAM-1-blocking antibodies, but not anti-VCAM-1 antibody, and immunohistochemistry showed that P-selectin expression was upregulated. However, chlorohydrin treatment of leukocytes did not increase expression of adhesion molecules LFA-1 or PSGL-1, but caused increased release of ROS from PMA-stimulated leukocytes by a CD36-dependent mechanism. The SOPC chlorohydrin-induced adhesion and ROS generation could be abrogated by pretreatment of the ApoE-/- mice with pravastatin or a nitrated derivative, NCX 6550. These findings suggest that phospholipid chlorohydrins formed in HOCl-treated LDL could contribute to the proinflammatory effects observed for this modified lipoprotein in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypercoiling polymers can be suited for application to living systems because they are similar in structure to the protein-based lipid assemblies found at fluid interfaces within the body. This leads to a range of exciting possibilities, not only in membrane transport applications but also in biosensors, drug delivery and mechanistic studies of biological membrane function. This study is focused in the study of the stability and suitability of nanostructures made of a hypercoiling polymer for drug delivery applications. The polymer poly (styrene-maleic acid) (PSMA) was combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) to form amphiphilic nanostructures. The stability and suitability of these polymer-phospholipid nanocarriers for hydrophobic and hydrophilic molecules load and release was analyzed by several techniques. It was found that several of the studied molecules had a substantial effect on the surface charge and stability of the nanocarrier. It was also demonstrated that two types of nanocarriers, chemically modified and unmodified, were able to control the release of the molecules, especially in the case of hydrophobic compounds. In addition, as the hydrophobicity increased the release slowed down. These clear nanocarriers have the potential to behave very favorably at interfaces such as the tear lipid film were transparency is a requirement, giving a new way of controlled drug release in the eye.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of low-density lipoprotein (LDL) is thought to contribute to atherogenesis, which is an inflammatory disease involving activation of phagocytic cells. Myeloperoxidase, an enzyme which is able to produce hypochlorous acid (HOCl), is released from these phagocytic cells, and has been found in an active form in atherosclerotic plaques. HOCl can oxidize both the lipid and protein moiety of LDL, and HOCl-modified LDL has been found to be pro-inflammatory, although it is not known which component is responsible for this effect. As HOCl can oxidize lipids to give chlorohydrins, we hypothesized that phospholipid chlorohydrins might have toxic and pro-inflammatory effects. We have formed chlorohydrins from fatty acids (oleic, linoleic and arachidonic acids) and from phospholipids (stearoyl-oleoyl phosphatidylcholine, stearoyl-linoleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine), and investigated various biological effects of these oxidation products. Fatty acid and phospholipid chlorohydrins were found to deplete ATP levels in U937 cells in a concentration-dependent manner, with significant effects observed at concentrations of 25 µM and above. Low concentrations (25 µM) of stearoyl-oleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine chlorohydrins were also found to increase caspase-3 activity. Finally, stearoyl-oleoyl phosphatidylcholine chlorohydrin increased leukocyte adhesion to artery segments isolated from C57Bl/6 mice. These results demonstrate potentially harmful effects of lipid chlorohydrins, and suggest that they may contribute to some of the pro-inflammatory effects that HOCl-modified low density lipoprotein has been found to induce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypercoiling poly(styrene-ALT-maleic anhydride) (PSMA) is known to undergo conformational transition in response to environmental stimuli. This behavior allows it to associate with the phospholipid, 2-dilauryl-SN-glycero-3- phosphocholine (DLPC) to produce nanostructures analogous to lipoproteins. The complex represents a new bio-mimetic delivery vehicle with applications in the cosmetic and pharmaceutical industries. This study investigates, for the first time, the association behavior of PSMA and DLPC through the combination of different analytical techniques. The results indicate that the association is primarily driven by hydrophobic interactions and depends on various factors including the polymer/lipid ratio, the polymer molecular weight and the pH of the aqueous environment. The conformational transition of PSMA leads to the formation of discrete micellar complexes involving anisotropic-to-isotropic lipid phase transformation. As the number of hydrophobic moieties in the polymer is increased, the pH-dependent conformational transition of the polymer plays less important part in achieving this phase transition of the lipid. © (2012) Trans Tech Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane-like structure formed by surfactant molecules of didodecyldimethylammonium bromide (DDAB) on both HOPG and gold electrodes were studied with AFM and SPR techniques. The study shows that the thickness of the adsorbed layer of DDAB is strongly dependent on the concentration of the vesicle solution. We have also investigated the adsorption of redox protein, Cytochrome c, on graphite electrode with in situ tapping mode AFM. The protein adsorbs spontaneously onto the electrode covered with an adsorbed phosphate layer and forms a uniform monolayer. The adsorbed protein exhibits a reversible electron transfer at 0.17 V (Ag/AgCI) once the electrode potential has been increased to 0.75V. Using surface plasmon resonance spectroscopy we have measured subtle conformational change in protein, Cyt c, due to electron transfer of a single electron on MPA-coated gold electrode. The electron transfer induced change in the resonant angle is about 0.006 deg., which corresponds to ~ 0.2 A decreases in the thickness. This is consistent with that reduced state is more compact than the oxidized state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical role played by copepods in ocean ecology and biogeochemistry warrants an understanding of how these animals may respond to ocean acidification (OA). Whilst an appreciation of the potential direct effects of OA, due to elevated pCO2, on copepods is improving, little is known about the indirect impacts acting via bottom-up(food quality) effects. We assessed, for the first time, the chronic effects of direct and/or indirect exposures to elevated pCO2 on the behaviour, vital rates, chemical and biochemical stoichiometry of the calanoid copepod Acartia tonsa. Bottom-up effects of elevated pCO2 caused species-specific biochemical changes to the phytoplanktonic feed, which adversely affected copepod population structure and decreased recruitment by 30 %. The direct impact of elevated pCO2 caused gender-specific respiratory responses in A.tonsa adults, stimulating an enhanced respiration rate in males (> 2-fold), and a suppressed respiratory response in females when coupled with indirect elevated pCO2 exposures. Under the combined indirect+direct exposure, carbon trophic transfer efficiency from phytoplankton-to-zooplankton declined to < 50 % of control populations, with a commensurate decrease in recruitment. For the first time an explicit role was demonstrated for biochemical stoichiometry in shaping copepod trophic dynamics. The altered biochemical composition of the CO2-exposed prey affected the biochemical stoichiometry of the copepods, which could have ramifications for production of higher tropic levels, notably fisheries. Our work indicates that the control of phytoplankton and the support of higher trophic levels involving copepods have clear potential to be adversely affected under future OA scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a comprehensive study of protein-mediated membrane fusion through single-molecule fluorescence resonance energy transfer (smFRET). Membrane fusion is one of the important cellular processes by which two initially distinct lipid bilayers merge their hydrophobic cores, resulting in one interconnected structure. For example, exocytosis, fertilization of an egg by a sperm and communication between neurons are a few among many processes that rely on some form of fusion. Proteins called soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) play a central role in fusion processes which is also regulated by many accessory proteins, such as synaptotagmin, complexin and Munc18. By a new lipid mixing method at the single-vesicle level, we are able to accurately detect different stages of SNARE-mediated membrane fusion including docking, hemi and full fusion via FRET value of single donor/acceptor vesicle pair. Through this single-vesicle lipid mixing assay, we discovered the vesicle aggregation induced by C2AB/Ca2+, the dual function of complexin, and the fusion promotion role of Munc18/SNARE-core binding mode. While this new method provides the information regarding the extent of the ensemble lipid mixing, the fusion pore opening between two vesicular cavities and the interaction between proteins cannot be detected. In order to overcome these limitations, we then developed a single-vesicle content mixing method to reveal the key factor of pore expansion by detecting the FRET change of dual-labeled DNA probes encapsulated in vesicles. Through our single-vesicle content mixing assay, we found the fusion pore expansion role of yeast SNAREs as well as neuronal SNAREs plus synaptotagmin 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of fish farming on dissolved amino acid concentrations, bacterioplankton abundance and exoproteolytic activity was assessed in 3 experimental marine ponds. Different standing stocks of fish were introduced (semi-intensive pond: 250 g.m(-2); semi-extensive pond: 50 g.m(-2) control pond: 0). Sea bass farming increased dissolved combined amino acid (DCAA) concentrations only in the semi-intensive pond. Bacterial standing stock was unaffected by fish food supply. However, bacterial exoproteolytic activity was strongly stimulated by aquaculture intensification; the average maximal rate of dissolved protein hydrolysis (V-m) increased with intensity (control pond: 1 500 nM.h(-1); semi-extensive pond: 2 600 nM.h(-1) semi-intensive pond: 5 100 nM.h(-1)). DCAA fluxes through bacterial exoproteolytic activity ranged between 16 (semi-extensive) and 11% (semi-intensive) of the daily nitrogen input by fish food. Bacterial exoproteolytic activity allowed a substantial part of the increased supply of dissolved amino nitrogen to be incorporated into bacterial biomass, then available for transfer to higher trophic levels within the ponds. It also significantly decreased dissolved organic nitrogen export from the ponds to the surrounding environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical synapses are composed of gap junctions, made from paired hemi-channels that allow for the transfer of current from one neuron to another. Gap junctions mediate electrical transmission in neurons, where they synchronize spiking and promote rapid transmission, thereby influencing the coordination, pattern, and frequency of firing. In the marine snail, Aplysia calfornica, two clusters of neuroendocrine bag cell neurons use electrical synapses to synchronize a 30-min burst of action potentials, known as the afterdischarge, which releases egg-laying hormone and induces reproduction. In culture, paired bag cell neurons present a junctional conductance that is non-rectifying and largely voltage-independent. During the afterdischarge, PKC is activated, which is known to increase voltage-gated Ca2+ current; yet, little is understood as to how this pathway impacts electrical transmission. The transfer of presynaptic spike-like waveforms (generated in voltage-clamp) to the postsynaptic cell (measured in current-clamp) was monitored with or without PKC activation. It was found that pretreatment with the PKC activator, phorbol-12-myristate-13-acetate (PMA), enhanced junctional conductance between bag cell neurons. Furthermore, in control, presynaptic action potential waveforms mainly evoked postsynaptic electrotonic potentials at both -60 and -40 mV. However, with PKC activation the presynaptic stimulus consistently elicited postsynaptic action potentials from resting potentials of -40 mV, and would occasionally result in firing from repetitive input at -60 mV. Moreover, to assess whether this enhanced electrical transmission genuinely reflects a greater junctional conductance or a change in postsynaptic responsiveness, a fast-phase junctional-like current was applied to single bag cell neurons. Neurons in PMA always fired action potentials in response to current injection as opposed to control, which were less likely to spike. This outcome did not change when the junctional-like current was artificially enhanced in control conditions. Also, in response to fast- and slow-phase electrotonic potential (ETP) waveforms, Ca2+ current was markedly larger in single PMA-treated neurons. These findings suggest that PKC activation may contribute to afterdischarge fidelity by recruiting postsynaptic Ca2+ current to promote synchronous network firing. Finally, Aplysia gap junction genes (innexins) were transfected into mouse N2A cells and characterized. This revealed a biophysical and pharmacological profile similar to native gap junctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dairy industries are asked to be increasingly competitive and efficient. Despite the increasing trend in milk yield and protein content during the last decade genetic selection, milk coagulation ability has diminished and even if the absolute amount of cheese produced has increased, the relative cheese yield from a set amount of milk, has decreased. As casein content and variants, along with milk clotting properties (MCP) are determined to a large extent at DNA level, genetic selection and embryo transfer can provide efficacious tools to reverse this trend and achieve improvements. The aim of the proposed research was to determine how rapidly and to what extent milk coagulation properties could be improved by using embryo transfer (ET) as a tool to increase the frequency of k-casein BB genotype cattle and reducing A and E variants in an Italian Holstein herd with a low prevalence of the favourable genotype. In the effort to optimize superovulation protocols and results, synchronization of wave emergence was performed through manual transrectal ablation of the largest (dominant) ovarian follicle on days 7 or 8 of the cycle (estrus = day 0); different drugs and dosage for the superstimulation protocol were experimented trying to overcome the negative effects of stress and the perturbance of LH secretion in superovulated highly producing lactating cows and the use of SexedULTRA™ sex-sorted semen, for artificial insemination of superovulated cows was reported for the first time. The selection program carried out in this research, gave evidence and gathered empirical data of feasible genetic improvements in cheesemaking ability of milk by means of k-casein BB selection. In conclusion, in this project, selection of k-casein BB genotype markedly enhanced cheese-making properties of milk, providing an impetus to include milk coagulation traits in genetic selection and breeding programs for dairy cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, integro-differential reaction-diffusion models are presented for the description of the temporal and spatial evolution of the concentrations of Abeta and tau proteins involved in Alzheimer's disease. Initially, a local model is analysed: this is obtained by coupling with an interaction term two heterodimer models, modified by adding diffusion and Holling functional terms of the second type. We then move on to the presentation of three nonlocal models, which differ according to the type of the growth (exponential, logistic or Gompertzian) considered for healthy proteins. In these models integral terms are introduced to consider the interaction between proteins that are located at different spatial points possibly far apart. For each of the models introduced, the determination of equilibrium points with their stability and a study of the clearance inequalities are carried out. In addition, since the integrals introduced imply a spatial nonlocality in the models exhibited, some general features of nonlocal models are presented. Afterwards, with the aim of developing simulations, it is decided to transfer the nonlocal models to a brain graph called connectome. Therefore, after setting out the construction of such a graph, we move on to the description of Laplacian and convolution operations on a graph. Taking advantage of all these elements, we finally move on to the translation of the continuous models described above into discrete models on the connectome. To conclude, the results of some simulations concerning the discrete models just derived are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.