961 resultados para PHASE-CONTRAST MICROSCOPY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To decouple interocular suppression and binocular summation we varied the relative phase of mask and target in a 2IFC contrast-masking paradigm. In Experiment I, dichoptic mask gratings had the same orientation and spatial frequency as the target. For in-phase masking, suppression was strong (a log-log slope of ∼1) and there was weak facilitation at low mask contrasts. Anti-phase masking was weaker (a log-log slope of ∼0.7) and there was no facilitation. A two-stage model of contrast gain control [Meese, T.S., Georgeson, M.A. and Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision, 6: 1224-1243] provided a good fit to the in-phase results and fixed its free parameters. It made successful predictions (with no free parameters) for the anti-phase results when (A) interocular suppression was phase-indifferent but (B) binocular summation was phase sensitive. Experiments II and III showed that interocular suppression comprised two components: (i) a tuned effect with an orientation bandwidth of ∼±33° and a spatial frequency bandwidth of >3 octaves, and (ii) an untuned effect that elevated threshold by a factor of between 2 and 4. Operationally, binocular summation was more tightly tuned, having an orientation bandwidth of ∼±8°, and a spatial frequency bandwidth of ∼0.5 octaves. Our results replicate the unusual shapes of the in-phase dichoptic tuning functions reported by Legge [Legge, G.E. (1979). Spatial frequency masking in human vision: Binocular interactions. Journal of the Optical Society of America, 69: 838-847]. These can now be seen as the envelope of the direct effects from interocular suppression and the indirect effect from binocular summation, which contaminates the signal channel with a mask that has been suppressed by the target. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed summation of contrast across eyes and area at detection threshold ( C t). Stimuli were sine-wave gratings (2.5 c/deg) spatially modulated by cosine- and anticosine-phase raised plaids (0.5 c/deg components oriented at ±45°). When presented dichoptically the signal regions were interdigitated across eyes but produced a smooth continuous grating following their linear binocular sum. The average summation ratio ( C t1/([ C t1+2]) for this stimulus pair was 1.64 (4.3 dB). This was only slightly less than the binocular summation found for the same patch type presented to both eyes, and the area summation found for the two different patch types presented to the same eye. We considered 192 model architectures containing each of the following four elements in all possible orders: (i) linear summation or a MAX operator across eyes, (ii) linear summation or a MAX operator across area, (iii) linear or accelerating contrast transduction, and (iv) additive Gaussian, stochastic noise. Formal equivalences reduced this to 62 different models. The most successful four-element model was: linear summation across eyes followed by nonlinear contrast transduction, linear summation across area, and late noise. Model performance was enhanced when additional nonlinearities were placed before binocular summation and after area summation. The implications for models of probability summation and uncertainty are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studied the effect of (i) the number of grating components and (ii) parameter randomisation on root-mean-square (r.m.s.) contrast sensitivity and spatial integration. The effectiveness of spatial integration without external spatial noise depended on the number of equally spaced orientation components in the sum of gratings. The critical area marking the saturation of spatial integration was found to decrease when the number of components increased from 1 to 5-6 but increased again at 8-16 components. The critical area behaved similarly as a function of the number of grating components when stimuli consisted of 3, 6 or 16 components with different orientations and/or phases embedded in spatial noise. Spatial integration seemed to depend on the global Fourier structure of the stimulus. Spatial integration was similar for sums of two vertical cosine or sine gratings with various Michelson contrasts in noise. The critical area for a grating sum was found to be a sum of logarithmic critical areas for the component gratings weighted by their relative Michelson contrasts. The human visual system was modelled as a simple image processor where the visual stimuli is first low-pass filtered by the optical modulation transfer function of the human eye and secondly high-pass filtered, up to the spatial cut-off frequency determined by the lowest neural sampling density, by the neural modulation transfer function of the visual pathways. The internal noise is then added before signal interpretation occurs in the brain. The detection is mediated by a local spatially windowed matched filter. The model was extended to include complex stimuli and its applicability to the data was found to be successful. The shape of spatial integration function was similar for non-randomised and randomised simple and complex gratings. However, orientation and/or phase randomised reduced r.m.s contrast sensitivity by a factor of 2. The effect of parameter randomisation on spatial integration was modelled under the assumption that human observers change the observer strategy from cross-correlation (i.e., a matched filter) to auto-correlation detection when uncertainty is introduced to the task. The model described the data accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic force microscopy has been used to study the surface properties of model spray dried powders. Phase imaging, nanoindentation and force modulation microscopy have differentiated between the different surface material properties of the particles, revealing a regular dispersion of soft, oil rich areas distributed across the particles' surface. Humidity and temperature cycling effects on the caking behavior of the particles have also been investigated, with significant morphology changes and onset of caking found to occur within relatively short periods of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual perception begins by dissecting the retinal image into millions of small patches for local analyses by local receptive fields. However, image structures extend well beyond these receptive fields and so further processes must be involved in sewing the image fragments back together to derive representations of higher order (more global) structures. To investigate the integration process, we also need to understand the opposite process of suppression. To investigate both processes together, we measured triplets of dipper functions for targets and pedestals involving interdigitated stimulus pairs (A, B). Previous work has shown that summation and suppression operate over the full contrast range for the domains of ocularity and space. Here, we extend that work to include orientation and time domains. Temporal stimuli were 15-Hz counter-phase sine-wave gratings, where A and B were the positive and negative phases of the oscillation, respectively. For orientation, we used orthogonally oriented contrast patches (A, B) whose sum was an isotropic difference of Gaussians. Results from all four domains could be understood within a common framework in which summation operates separately within the numerator and denominator of a contrast gain control equation. This simple arrangement of summation and counter-suppression achieves integration of various stimulus attributes without distorting the underlying contrast code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spray-dried materials are being used increasingly in industries such as food, detergent and pharmaceutical manufacture. Spray-dried sodium carbonate is an important product that has a great propensity to cake; its moisture-sorption properties are very different to the crystalline and amorphous species, with a great affinity for atmospheric moisture. This work demonstrates how the noncontact surface analysis of individual particles using atomic force microscopy can highlight the possible mechanisms of unwanted agglomeration. The nondestructive nature of this method allows cycling of localised humidity in situ and repeated scanning of the same particle area. The resulting topography and phase scans showed that humidity cycling caused changes in the distribution of material phases that were not solely dependent on topographical changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Changes in refractive error are well documented over the typical human lifespan. However, a relatively neglected period of investigation appears to be during the late fourth decade; this is at the incipient phase of presbyopia (IP), where the amplitude of accommodation is much reduced and approaches the level where a first reading addition is anticipated. Significantly, informal clinical observation has suggested a low incidence of an unexpected abrupt increase in myopia during IP. Methods: We investigated this alleged myopic shift retrospectively by mapping the longitudinal refraction histories of normally-sighted 35-44years old British White patients previously examined in routine optometric practice. The refractive trends in the right eyes of healthy myopic subjects (spherical equivalent refraction, SER =-0.50D: N=39) were analysed relative to that point at which a first near dioptric addition was considered to be clinically useful. Results: A refractive change was evident in some subjects during IP; viz, an abrupt increase in myopic SER of between -0.50 and -0.75D. These individuals (N=8) represented 20% of the study population of myopic incipient presbyopes. Beyond the pivotal point of the first near addition the longitudinal refraction stabilized in these subjects. In contrast, and as the extent of the available longitudinal data would permit, the remaining myopic eyes maintained an approximately stable refractive trend throughout IP and beyond. Conclusions: The anatomical or physiological basis of this specific late (non-developmental) abrupt myopic refractive change is an intriguing issue. Axial (vitreous chamber elongation), corneal (contour) and lenticular (profile and index) power bases, alone or in concert, might be considered candidates for this hitherto unexplored refractive phenomenon. Although necessarily obtained under conventional conditions of central (0deg) fixation, our data might also be a reflection of the recent recognition of the possible influence of the peripheral refraction upon the axial error. Consideration of this material provides an impetus for further research, including ocular biometry, a reappraisal of ciliary zonular functional anatomy, renewed investigation of the AC/A ratio, and the extent of a centripetal refractive influence on myopia development. © 2011 The College of Optometrists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of substitution and oxidation-reduction on the thermal conductivity of perovskite-like layered structure (PLS) ceramics was investigated in relation to mass contrast and non-stoichiometry. Sr (acceptor) was substituted on the A site, while Ta (donor) was substituted on the B site of La2Ti2O7. Substitution in PLS materials creates atomic scale disorders to accommodate the non-stoichiometry. High resolution transmission electron microscopy and X ray diffraction revealed that acceptor substitution in La2Ti2O7 produced nanoscale intergrowths of n = 5 layered phase, while donor substitution produced nanoscale intergrowths of n = 3 layered phase. As a result of these nanoscale intergrowths, the thermal conductivity value reduced by as much as ∼20%. Pure La2Ti2O7 has a thermal conductivity value of ∼1.3 W/m K which dropped to a value of ∼1.12 W/m K for Sr doped La2Ti2O7 and ∼0.93 W/m K for Ta doped La2Ti2O7 at 573 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binocular combination for first-order (luminancedefined) stimuli has been widely studied, but we know rather little about this binocular process for spatial modulations of contrast (second-order stimuli). We used phase-matching and amplitude-matching tasks to assess binocular combination of second-order phase and modulation depth simultaneously. With fixed modulation in one eye, we found that binocularly perceived phase was shifted, and perceived amplitude increased almost linearly as modulation depth in the other eye increased. At larger disparities, the phase shift was larger and the amplitude change was smaller. The degree of interocular correlation of the carriers had no influence. These results can be explained by an initial extraction of the contrast envelopes before binocular combination (consistent with the lack of dependence on carrier correlation) followed by a weighted linear summation of second-order modulations in which the weights (gains) for each eye are driven by the first-order carrier contrasts as previously found for first-order binocular combination. Perceived modulation depth fell markedly with increasing phase disparity unlike previous findings that perceived first-order contrast was almost independent of phase disparity. We present a simple revision to a widely used interocular gain-control theory that unifies first- and second-order binocular summation with a single principle-contrast-weighted summation-and we further elaborate the model for first-order combination. Conclusion: Second-order combination is controlled by first-order contrast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From an economic standpoint, the powder metallurgy (P/M) is a technique widely used for the production of small parts. It is possible, through the P/M and prior comminution of solid waste such as ferrous chips, produce highly dense sintered parts and of interest to the automotive, electronics and aerospace industries. However, without prior comminution the chip, the production of bodies with a density equal to theoretical density by conventional sintering techniques require the use of additives or significantly higher temperatures than 1250ºC. An alternative route to the production of sintered bodies with high density compaction from ferrous chips (≤ 850 microns) and solid phase sintering is a compression technique under high pressure (HP). In this work, different compaction pressures to produce a sintered chip of SAE 1050 carbon steel were used. Specifically, the objective was to investigate them, the effect of high pressure compression in the behavior of densification of the sintered samples. Therefore, samples of the chips from the SAE 1050 carbon steel were uniaxially cold compacted at 500 and 2000 MPa, respectively. The green compacts obtained were sintered under carbon atmosphere at 1100 and 1200°C for 90 minutes. The heating rate used was 20°C/min. The starting materials and the sintered bodies were characterized by optical microscopy, SEM, XRD, density measurements (geometric: mass/volume, and pycnometry) and microhardness measurements Vickers and Rockwell hardness. The results showed that the compact produced under 2000 MPa presented relative density values between 93% and 100% of theoretical density and microhardness between 150 HV and 180 HV, respectively. In contrast, compressed under 500 MPa showed a very heterogeneous microstructure, density value below 80% of theoretical density and structural conditions of inadequate specimens for carrying out the hardness and microhardness measurements. The results indicate that use of the high pressure of ferrous chips compression is a promising route to improve the sinterability conditions of this type of material, because in addition to promoting greater compression of the starting material, the external tension acts together with surface tension, functioning as the motive power for sintering process. Additionally, extremely high pressures allow plastic deformation of the material, providing an intimate and extended contact of the particles and eliminating cracks and pores. This tends to reduce the time and / or temperature required for good sintering, avoiding excessive grain growth without the use of additives. Moreover, higher pressures lead to fracture the grains in fragile or ductile materials highly hardened, which provides a starting powder for sintering, thinner, without the risk of contamination present when previous methods are used comminution of the powder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of highly-oriented polycrystalline ceramics of Bi 5Fe 0.5Co 0.5Ti 3O 15, prepared via molten salt synthesis and uniaxial pressing of high aspect ratio platelets is reported. Electron backscatter images show a secondary phase within the ceramic which is rich in cobalt and iron. The concentration of the secondary phase obtained from scanning electron microscopy is estimated at less than 2% by volume, below the detection limit of x-ray diffraction (XRD). The samples were characterized by x-ray diffraction, polarization-electric field measurements, superconducting quantum interference device as a function of sample orientation and vibrating sample magnetometry as a function of temperature. It is inferred from the data that the observed ferromagnetic response is dominated by the secondary phase. This work highlights the importance of rigorous materials characterisation in the study of multiferroics as small amounts of secondary phase, below the limit of XRD, can lead to false conclusions.