972 resultados para PHARMACOLOGICAL CHAPERONES
Resumo:
Purpose We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the antihypertensive drug losartan (LOS). Results We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumorassociated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C. Conclusions Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.
Resumo:
The aims of this study were to characterize the recently cloned rat norepinephrine transporter (NET) in more detail and in particular to study possible species differences in its pharmacological properties compared with the human and bovine NETs. The study was carried out by measuring the uptake of [3H]norepinephrine in COS-7 cells expressing the NET after transient transfection with rat, human, or bovine NET cDNA. There were small but significant differences between the rat NET and the human or bovine NETs with respect to the affinities of sodium ions (greater for rat than for bovine) of the substrates norepinephrine, epinephrine, and 1-methyl-4-phenylpyridinium (greater for human than for rat), and of the inhibitor cocaine (greater for human and bovine than for rat), whereas the affinities of dopamine and of most inhibitors, including tricyclic antidepressants, showed no species differences. The fact that the affinities for some substrates, cocaine and sodium ions exhibited small but significant interspecies differences among the rat, human, and bovine NETs suggests that ligand recognition, the translocation process, and sodium ion dependence are influenced differentially by just a few amino acid exchanges in the primary sequences of the transporters. On the other hand, the lack of any major differences in the pharmacological properties of the rat, human, and bovine NETs in this study suggests that data obtained in previous studies on rat tissues and bovine cells can be extrapolated, in all except the most quantitative analyses, to the properties of the human NET.
Resumo:
The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219)that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 Angstrom was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 Angstrom or larger significantly reduced channel conductance, whereas spermine (similar to 15 Angstrom), PLL19 (similar to 25 Angstrom) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-bipyridinium (similar to 30 Angstrom) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is similar to 40 Angstrom, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL.
Resumo:
Centella asiatica (L.) Urb an is distributed widely in South America and Asia and is known as a therapeutic agent in folk medicine, capable of improving memory and treating several neurological disorders. Asiaticoside is one of the compounds found in C asiatica leaves that is suggested to be responsible for its pharmacological potential. Phospholipase A(2) (PLA(2)) is a group of enzymes that has abnormal activity in the central nervous system in some neuropsychiatric diseases. In this work, the asiaticoside present in C asiatica water extract was quantified by HPLC analysis. We also evaluated the activity of subtypes of PLA(2) in cerebellar samples from rats after C asiatica water extract treatment using a radioenzymatic assay. Asiaticoside was the major compound (84%) found in Centella water extract. We found a dose-dependent inhibitory effect of C asiatica water extract on the activity of Ca(2+)-independent PLA(2) (iPLA(2)) and cytosolic PLA(2) (cPLA(2)). The inhibition of these enzymes in the brain suggests that C asiatica may be useful to treat conditions associated with increased PLA(2) activity in the brain, such as epilepsy, stroke, multiple sclerosis and other neuropsychiatric disorders. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Regarding all benefits of exercise training, a question remains: how long are these benefits kept? This study evaluated the effect of 3-week detraining after 10 weeks of training in STZ-diabetic rats. Male Wistar rats were assigned into: sedentary controls, trained controls, trained-detrained controls. sedentary diabetic, trained diabetic and trained-detrained diabetic. Arterial pressure (AP) and heart rate (HR) were recorded by a data acquisition system. Baroreflex sensitivity (BRS) was evaluated by HR responses to AP changes induced by infusion of vasoactive drugs. Intrinsic heart rate (IHR), sympathetic tonus (ST) and vagal tonus (VT) were evaluated by pharmacological blockade with atenolol and atropine. Spectral analysis of systolic AP and HR variabilities (HRV) was performed to estimate autonomic modulation to the heart and vessels. Diabetes cardiovascular and autonomic dysfunctions were reversed by exercise training and partially maintained in the 3-week detraining period. In controls, training decreased AP and HR and improved BRS. changes that returned to baseline values after detraining. IHR and VT were improved in trained diabetic rats and remained in detrained diabetic ones. LF component of HRV decreased in trained control group. In diabetics. exercise training improved variance, and absolute LF and HF components of HRV. Only HF was maintained in detrained diabetic group. Moreover, there was an inverse relationship between plasma glucose and the absolute HF component of HRV. These changes probably determined the different survival rate of 80% in diabetic detrained and 51% in diabetic sedentary rats. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Introduction The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi. Methods Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively). Results CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours. Conclusions In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.
Resumo:
Menopause is recognized as a period of increased risk for coronary heart disease. Although the benefits of exercise training in lowering cardiovascular risk factors are well established, the risks and benefits of hormone therapy have been questioned. The purpose of the present study was to investigate the effects of estrogen therapy (HT) associated or not with exercise training (ET) in autonomic cardiovascular control in ovariectomized (OVX) rats. Female rats were divided into: control, OVX, OVX+HT, OVX+ET and OVX+HT+ET. HT was performed using a 0.25 mg 8-weeks sustained release pellet. Trained groups were submitted to an 8-week exercise training protocol on treadmill. Baroreflex sensitivity (BRS) was evaluated by heart rate responses to arterial pressure (AP) changes, and vagal and sympathetic tonus by pharmacological blockade. Ovariectomy induced an AP increase (123 +/- 2 mmHg vs. 108 +/- 2 mmHg), BRS impairment (similar to 69%), sympathetic activation (similar to 100%) and vagal tonus reduction (similar to 77%) compared to controls. HT or ET normalized the changes in parasympathetic tonus. However, only the association HT + ET was able to promote normalization of AP, BRS and sympathetic tonus, as compared to controls. These results indicate that ET induces cardiovascular and autonomic benefits in OVX rats under HT, suggesting a positive role of this association in the management of cardiovascular risk factor in postmenopausal women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) OF PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background A 38-year-old man with AIDS presented to hospital with a 3-month history of fevers, bilateral lumbar pain, dysuria and increased urinary frequency. Six years earlier he had received 6 months` treatment for pulmonary tuberculosis. At presentation, he was on antiretroviral therapy with a combination of efavirenz, stavudine and lamivudine. Investigations Physical examination, evaluation of HIV viral load, CD4 count, measurement of serum hemoglobin concentration, white blood cell count, urinalysis, urine culture for usual pathogens, direct smear and urine culture for Mycobacterium tuberculosis, chest radiography, abdominal CT, measurement of serum creatinine concentration and estimated creatinine clearance. Diagnosis Urogenital tuberculosis. Management The patient`s symptoms and radiological abnormalities persisted despite antibiotic therapy for presumed bacterial infection. After urine culture had confirmed M. tuberculosis infection, he was administered pharmacological treatment comprising isoniazid, rifampin, pyrazinamide and ethambutol for 2 months, with isoniazid and rifampin given for a further 7 months. His symptoms improved within a few days of initiating treatment. Six months after treatment started, CT revealed a nonfunctioning right kidney and a functional left kidney with areas of scarring. The patient refused right nephrectomy, and completed his pharmacological treatment. No evidence of disease recurrence was observed during 2 years of follow-up.
Resumo:
Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-alpha, IL-1 beta, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological neutralization may be of therapeutic benefit.
Resumo:
Resveratrol is a stilbene compound found in grapes and other sources. In this study we examined the effects of trans-resveratrol (4.38-438 mu M/implant) in the vasculogenesis of yolk-sac membranes and its capacity to improve chick embryo growth. High concentrations of the stilbene (43.8-438 mu M) significantly inhibited early vessel formation, decreasing the percentage vitelline vessels of 3.5-day embryos by 50% compared to the control. In addition, basic fibroblast growth factor-stimulated vasculogenesis (140% of vessels as compared to control) was partially reversed by t-resveratrol (35% of inhibition) and treatments with cyclooxygenase inhibitors (acetylsalicylic acid and indomethacin) as well a protein-kinase C (PKC) activator (phorbol-12,13-dibutyrate) decreased the vessel number to 60%, 50%, and 44%, respectively. Treatments with t-resveratrol (4.38-43.8 mu M/implant) significantly increased the body length of embryos incubated in vitro uncoupled from any impairment in the body shape or detectable embryotoxic effect. We suggest that the antivasculogenic activity and the enhancement in embryonic growth promoted by non acute treatments with t-resveratrol were, at least in part, due to PKC inhibition. We suggest that t-resveratrol can be usable not only as a reliable functional nutriment, but also is useful for the development of prophylactic and/or therapeutic agents for treatment of angiogenic-degenerative diseases.
Resumo:
Background: A limited number of mutations in the GH secretagogue receptor gene (GHSR) have been described in patients with short stature. Objective: To analyze GHSR in idiopathic short stature (ISS) children including a subgroup of constitutional delay of growth and puberty (CDGP) patients. Subjects and methods: The GHSR coding region was directly sequenced in 96 independent patients with ISS, 31 of them with CDGP, in 150 adults, and in 197 children with normal stature. The pharmacological consequences of GHSR non-synonymous variations were established using in vitro cell-based assays. Results: Five different heterozygous point variations in GHSR were identified (c.-6 G>C, c.251G>T (p.Ser84Ile), c.505G>A (p.Ala169Thr), c.545 T>C (p.Val182Ala), and c.1072G>A (p.Ala358Thr)), all in patients with CDGP. Neither these allelic variants nor any other mutations were found in 694 alleles from controls. Functional studies revealed that two of these variations (p.Ser84Ile and p. Val182Ala) result in a decrease in basal activity that was in part explained by a reduction in cell surface expression. The p.Ser84Ile mutation was also associated with a defect in ghrelin potency. These mutations were identified in two female patients with CDGP (at the age of 13 years, their height SDS were -2.4 and -2.3). Both patients had normal progression of puberty and reached normal adult height (height SDS of -0.7 and -1.4) without treatment. Conclusion: This is the first report of GHSR mutations in patients with CDGP. Our data raise the intriguing possibility that abnormalities in ghrelin receptor function may influence the phenotype of individuals with CDGP.
Resumo:
The trematode Schistosoma mansoni is the primary cause of schistosomiasis, a devastating neglected tropical disease that affects 200 million individuals. Identifying novel therapeutic targets for the treatment of schistosomiasis is therefore of great public interest. The catecholamines norepinephrine (NE) and dopamine (DA) are essential for the survival of the parasite as they cause muscular relaxation and a lengthening in the parasite and thereby control movement. Here we characterize a novel dopamine/norepinephrine transporter (SmDAT) gene transcript, from S. mansoni. The SmDAT is expressed in the adult form and in the sporocyst form (infected snails) of the parasite, and also in the egg and miracidium stage. It is absent in the cercariae stage but curiously a transcript missing the exon encoding transmembrane domain 8 was identified in this stage. Heterologous expression of the cDNA in mammalian cells resulted in saturable, dopamine transport activity with an apparent affinity for dopamine comparable to that of the human dopamine transporter. Efflux experiments reveal notably higher substrate selectivity compared with its mammalian counterparts as amphetamine is a much less potent efflux elicitor against SmDAT compared to the human DAT. Pharmacological characterization of the SmDAT revealed that most human DAT inhibitors including psychostimulants such as cocaine were significantly less potent in inhibiting SmDAT. Like DATs from other simpler organisms the pharmacology for SmDAT was more similar to the human norepinephrine transporter. We were not able to identify other dopamine transporting carriers within the completed parasite genome and we hypothesize that the SmDAT is the only catecholamine transporter in the parasite and could be responsible for not only clearing DA but also NE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X(1)-P2X(7)) and seven heteromeric receptors (P2X(1/2), P2X(1/4), P2X(1/5), P2X(2/3), P2X(2/6), P2X(4/6), P2X(4/7)) have been described. ATP treatment of Leydig cells leads to an increase in [Ca(2+)](i) and testosterone secretion, supporting the hypothesis that Ca(2+) signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X(2). In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X(2), P2X(4), P2X(6), and P2X(7) subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 mu M ivermectin induced an increase (131.2 +/- 5.9%) and 3 mu M ivermectin a decrease (64.2 +/- 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X(4) subunits. P2X(7) receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X(2/4/6), is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X(2) subunit.