982 resultados para P450-catalyzed Hydroxylation


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids based on 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) and 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) were used as reusable alternatives to volatile organic solvents (VOCs) for ethylenediammonium diacetate (EDDA) catalyzed Gewald synthesis of 2-aminothiophenes. Significant rate enhancement and improvement of the yield were observed. The ionic liquids containing catalyst EDDA were recycled several times with no decreases in yields and reaction rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The moisture and air stable ionic liquids 1-butyl-3-methylimidazonium tetrafluoroborate [bmim]BF4 and 1-butyl-3-methylimidazonium hexafluorophosphate [bmim]PF6 were used as ‘green' recyclable alternatives to volatile organic solvents (VOCs) for ethylenediammonium diacetate (EDDA) catalyzed Knoevenagel condensation between aldehydes or ketones with active methylene compounds. Both aldehydes and ketones gave satisfactory results. The ionic liquids containing catalyst EDDA were recycled several times with no decreases in yields and reaction rates. In the case of 2-hydroxybenzaldehyde, the reactions led to the formation of 3-substituted coumarins under standard reaction conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Areneselenyl or alkaneselenyl magnesium bromide reacts rapidly with diaryliodonium salt to give the corresponding diaryl or alkyl aryl selenide in the presence of catalytic amounts of Pd-(PPh3)4 in good yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many dietary factors have been associated with a decreased risk of developing cancer. One potential mechanism by which these factors, chemopreventors, protect against cancer may be via alteration of carcinogen metabolism. The broccoli constituent sulforaphane (1-isothiocyanate-4-methylsulinylbutane) (CH3-S0-(CH2)4-NCS) has been isolated as a potential inducer of phase II detoxification enzymes and also protects rodents against 9,10-dimethyl-1,2-benz[aJanthracene-induced mammary tumours. The ability of sulforaphane to also modulate phase I activation enzymes (cytochrome P450) (CYP450) was studied here. Sulforaphane was synthesised with an overall yield of 15%, essentially via 1-methylsulfinylphthalimidobutane, which was oxidised to the sulfoxide moiety. Deprotective removal of phthalimide yielded the amine, which was converted into sulforaphane by reaction with N,N'-thionocarbonyldiimidazole. Purity (95 %) was checked by 1H-NMR,13C-NMR and infrared and mass spectrometry.Sulforaphane was a competitive inhibitor of CYP2E1 in acetone-induced Sprague-Dawley rat microsomes (Ki 37.9 ± 4.5μM), as measured by the p-nitrophenol hydroxylase assay. Ethoxyresorufin deethylase activity (EROD), a measurement of CYP1A activity, was also inhibited by sulforaphane (100μM) but was not competitive, and a preincubation time-dependence was observed. In view of these results, the capacity of sulforaphane to inhibit N-nitrosodimethylamine (NDMA)-induced genotoxicity (CYP2E1-mediated) was studied using mouse liver activation systems. Sulforaphane (>0.8μM) inhibited the mutagenicity of NDMA (4.4 mg/plate) in Salmonella typhimurium strain TA100 after pre-incubation for 45 min with acetone-induced liver 9000 g supernatants from Balb/c mice. Unscheduled DNA synthesis induced by NDMA (33μ5 M) in mouse hepatocytes was also reduced by sulforaphane in a concentration-dependent manner (0.064-20μM). Sulforaphane was not genotoxic itself in any of these systems and cytotoxic only at high concentrations (>0.5 mM and > 40μM respectively). The ability of sulforaphane to modulate the orthologous human enzymes was studied using a human epithelial liver cell line (THLE) expressing individual human CYP450 isoenzymes. Using the Comet assay (a measurement of DNA strand breakage under alkaline conditions), NDMA (0.01-1μg/ml) and IQ (0.1-10μg/ml) were used to produce strand breaks in T5-2E1 cells (expressing human CYP2E1) and T5-1A2 cells (expressing human CYP1A2) respectively, however no response was observed in T5-neo cells (without CYP450 cDNA transfection). Sulforaphane inhibited both NDMA and IQ-induced DNA strand breakage in a concentration-dependent manner (0.1-10μM).The inhibition of metabolic activation as a basis for the antigenotoxic action of sulforaphane in these systems (bacteria, rodent hepatocytes and human cells) is further supported by the lack of this chemopreventor to influence NaN3 mutagenicity in S. typhimurium and H202-induced DNA strand breakage in T5-neo cells. These findings suggest that inhibition of CYP2E1 and CYP1A by sulforaphane may contribute to its chemoprotective potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The passage number and origin of two populations of Caco-2 cells influence their enterocyte-like characteristics. Caco-2 cells of passage number >90 from Novartis pharmaceutical company possess higher levels of expression of alkaline phosphatase and P-glycoprotein and a greater cellular uptake of Gly-1.-Pro than those of passage number <40 from the American Type Tissue Culture collection. High P-gp expressing Caco-2 cells have been developed through stepwise selection of the cells with doxonibicin. This newly-developed cell line (hereafter referred to as Type I) possesses approximately twice as much P-gp protein than non-exposed cells, restricts the transepithelial transport of vincristine in the apical-to-basolateral direction whilst facilitating its transport in the reverse direction and accumulates less vincristine than non-exposed cells. There is no apparent evidence of the co-existence of the multidrug resistance protein (MIT) in Type I cells to account for the above-listed observations. Stopping the exposure for more than 28 days decreases the P-gp protein expression in previously doxorubicin-exposed Type I Caco-2 cells and reduces the magnitude of vincristine transepithelial fluxes in both directions to the levels that are almost similar to those of non-exposed cells. Exposing Caco-2 cells to 0.25 JAM la, 25-dihydroxyvitamin D3 induces their expression of cytochrome P450 3A4 protein to the level that is equivalent to that from isolated human jejunal cells. Under the same treatment, doxorubiein-exposed (Type I) cells metabolise naidazolam poorly and less extensively compared to non-exposed cells, suggesting that there is no such co-regulation of P-gp and CYP3A4 in Caco-2 cells. However, there is evidence which suggests CYP3A metabolises mida_zolam into 1- and 4-hydroxymidazolam, the latter may possibly be a P-gp substrate and is transported extracellularly by P-gp, supporting the hypothesis of P-gp-CYP3A4 synergistic roles in keeping xenobiotics out of the body. Doxoru.bicin-exposed (Type I) cells are less effective in translocating L-proline and glycyl-L-proline across the cell mono layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No need to get away: X-ray absorption spectroscopy of catalytically active palladium nanopartlcles during a SuzukiMlyaura cross-coupling reaction revealed that the nanopartlcles were stable under the reaction conditions, and that cross-coupling Involved the direct participation of surface palladium defect sites In the catalytic cycle (see picture). Selective chemical and structural poisons provided further evidence for a heterogeneous active site. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant templating offers a simple route to synthesize high-surface area silicas with ordered, tunable mesopore architectures. The use of these materials as versatile catalyst supports for palladium nanoparticles has been explored in the aerobic selective oxidation (selox) of allylic alcohols under mild conditions. Families of Pd/mesoporous silicas, synthesized through incipient wetness impregnation of SBA-15, SBA-16, and KIT-6, have been characterized by using nitrogen porosimetry, CO chemisorption, diffuse reflection infrared Fourier transform spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution TEM and benchmarked in liquid phase allylic alcohol selox against a Pd/amorphous SiO2 standard. The transition from amorphous to two-dimensional parallel and three-dimensional interpenetrating porous silica networks conferred significant selox rate enhancements associated with higher surface densities of active palladium oxide sites. Dissolved oxygen was essential for insitu stabilization of palladium oxide, and thus maintenance of high activity on-stream, whereas selectivity to the desired aldehyde selox product over competing hydrogenolysis pathways was directed by using palladium metal. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterogeneously catalyzed transesterification reaction for the production of biodiesel from triglycerides was investigated for reaction mechanism and kinetic constants. Three elementary reaction mechanisms Eley-Rideal (ER), Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Hattori with assumptions, such as quasi-steady-state conditions for the surface species and methanol adsorption, and surface reactions as the rate-determining steps were applied to predict the catalyst surface coverage and the bulk concentration using a multiscale simulation framework. The rate expression based on methanol adsorption as the rate limiting in LHHW elementary mechanism has been found to be statistically the most reliable representation of the experimental data using hydrotalcite catalyst with different formulations. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercalation of an in situ prepared [Rh(OH)6]3- complex into an anion exchangeable Ni-Zn layered hydroxy double salt (Rh/NiZn) was demonstrated. The resulting Rh/NiZn effectively catalyzed the 1,4-addition of diverse enones and phenylboronic acids to their corresponding β-substituted carbonyl compounds. In the case of 2-cyclohexen-1-one and phenylboronic acid, a turnover frequency (TOF) of 920 h-1 based on Rh was achieved. The [Rh(OH)6]3- complex maintained its original monomeric trivalent state within the NiZn interlayer following catalysis, attributable to a strong electrostatic interaction between the NiZn host and anionic Rh(III) complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium nanoparticles deposited on a variety of surfaces exhibited thermal sintering characteristics that were very strongly correlated with the lability of lattice oxygen in the supporting oxide materials. Specifically, the higher the lability of oxygen ions in the support, the greater the resistance of the nanoparticles to sintering in an oxidative environment. Thus with γ-Al2O3 as the support, rapid and extensive sintering occurred. In striking contrast, when supported on gadolinia-ceria and alumina-ceria-zirconia composite, the Ir nanoparticles underwent negligible sintering. In keeping with this trend, the behavior found with yttria-stabilized zirconia was an intermediate between the two extremes. This resistance, or lack of resistance, to sintering is considered in terms of oxygen spillover from support to nanoparticles and discussed with respect to the alternative mechanisms of Ostwald ripening versus nanoparticle diffusion. Activity towards the decomposition of N2O, a reaction that displays pronounced sensitivity to catalyst particle size (large particles more active than small particles), was used to confirm that catalytic behavior was consistent with the independently measured sintering characteristics. It was found that the nanoparticle active phase was Ir oxide, which is metallic, possibly present as a capping layer. Moreover, observed turnover frequencies indicated that catalyst-support interactions were important in the cases of the sinter-resistant systems, an effect that may itself be linked to the phenomena that gave rise to materials with a strong resistance to nanoparticle sintering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass offers a unique resource for the sustainable production of bio-derived chemical and fuels as drop-in replacements for the current fossil fuel products. Lignin represents a major component of lignocellulosic biomass, but is particularly recalcitrant for valorization by existing chemical technologies due to its complex cross-linking polymeric network. Here, we highlight a range of catalytic approaches to lignin depolymerisation for the production of aromatic bio-oil and monomeric oxygenates.