968 resultados para P-Zn interaction
Resumo:
The androgen receptor (AR) initiates important developmental and oncogenic transcriptional pathways. The AR is known to bind as a homodimer to 15-base pair bipartite palindromic androgen-response elements; however, few direct AR gene targets are known. To identify AR promoter targets, we used chromatin immunoprecipitation with on-chip detection of genomic fragments. We identified 1,532 potential AR-binding sites, including previously known AR gene targets. Many of the new AR target genes show altered expression in prostate cancer. Analysis of sequences underlying AR-binding sites showed that more than 50% of AR-binding sites did not contain the established 15 bp AR-binding element. Unbiased sequence analysis showed 6-bp motifs, which were significantly enriched and were bound directly by the AR in vitro. Binding sequences for the avian erythroblastosis virus E26 homologue (ETS) transcription factor family were also highly enriched, and we uncovered an interaction between the AR and ETS1 at a subset of AR promoter targets.
Resumo:
To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.
Resumo:
Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential (UNEP 2001). The majority of studies on endocrine disruption have focused on interferences on the sexual steroid hormones and so have overlooked disruption to glucocorticoid hormones. Here the endocrine disrupting potential of individual POPs and their mixtures has been investigated in vitro to identify any disruption to glucocorticoid nuclear receptor transcriptional activity. POP mixtures were screened for glucocorticoid receptor (GR) translocation using a GR redistribution assay (RA) on a CellInsight(TM) NXT High Content Screening (HCS) platform. A mammalian reporter gene assay (RGA) was then used to assess the individual POPs, and their mixtures, for effects on glucocorticoid nuclear receptor transactivation. POP mixtures did not induce GR translocation in the GR RA or produce an agonist response in the GR RGA. However, in the antagonist test, in the presence of cortisol, an individual POP, p,p'-dichlorodiphenyldichloroethylene (DDE), was found to decrease glucocorticoid nuclear receptor transcriptional activity to 72.5% (in comparison to the positive cortisol control). Enhanced nuclear transcriptional activity, in the presence of cortisol, was evident for the two lowest concentrations of perfluorodecanoic acid (PFOS) potassium salt (0.0147mg/ml and 0.0294mg/ml), the two highest concentrations of perfluorodecanoic acid (PFDA) (0.0025mg/ml and 0.005mg/ml) and the highest concentration of 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) (0.0000858mg/ml). It is important to gain a better understanding of how POPs can interact with GRs as the disruption of glucocorticoid action is thought to contribute to complex diseases.
Resumo:
The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.
Resumo:
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.
Resumo:
The interaction of high‐intensity laser pulses with matter releases instantaneously ultra‐large currents of highly energetic electrons, leading to the generation of highly‐transient, large‐amplitude electric and magnetic fields. We report results of recent experiment in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channelling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser‐irradiated thin metallic foils. An application employing laser‐driven impulsive fields for energy‐selective ion beam focusing is also presented.
Resumo:
With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.
Resumo:
Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm−2 and 1021 Wcm−2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm−2.
Resumo:
We report the exploration of some unique metabolic pathways in Perkinsus olseni a marine protist parasite, responsible to significant mortalities in mollusks, especially in bivalves all around the world. In Algarve, south of Portugal carpet shell clam Ruditapes decussatus mortalities can reach up to 70%, causing social and economic losses. The objective of studying those unique pathways, is finding new therapeutic strategies capable of controlling/eliminating P. olseni proliferation in clams. In that sense metabolic pathways, were explored, and drugs affecting these cycles were tested for activity. The first step involved the identification of the genes behind those pathways, the reconstitution of the main steps, and molecular characterization of those genes and later on, the identification of possible targets within the genes studied. Metabolic cycles were screened due to the fact of not being present in host or differ in a critical way, such as the following pathways: shikimate, MEP-‐ isoprenoids, Leloir cycle for chitin production, purine biosynthesis (unique among protists), the de novo synthesis of folates (absent in metazoa) and some unique genes like, the alternative oxidase (a branch of respiratory chain) and the hypoxia sensor HPH. All those pathways were covered and possible chemical inhibition using therapeutic drugs was tested with positive results. The relation between the common host Ruditapes decussatus and P. olseni was also explored in a dimension not possible some years ago. With the accessibility to second generation sequencers and microarray analysis platforms, genes involved in host defense or parasite virulence and resistance to the host were deciphered, allowing aiming to new targets (mechanisms and pathways), offering new possibilities for the control of Perkinsus in close environments. The thousands of genes, generated by this work, sequenced and analyzed from this commercial valuable clam and for Perkinsus olseni will be an important and value tool for the scientific community, allowing a better understanding of host-‐parasite interactions, promoting the usage of P. olseni as an emerging model for alveolata parasites.
Resumo:
An impedance method was developed to determine how immune system cells (hemocyte) interact with intruder cells (parasites). When the hemocyte cells interact with the parasites, they cause a defensive reaction and the parasites start to aggregate in clusters. The level of aggregation is a measure of the host-parasite interaction, and provides information about the efficiency of the immune system response. The cell aggregation is monitored using a set of microelectrodes. The impedance spectrum is measured between each individual microelectrode and a large reference electrode. As the cells starts to aggregate and settle down towards the microelectrode array the impedance of the system is changed. It is shown that the system impedance is very sensitive to the level of cell aggregation and can be used to monitor in real time the interaction between hemocyte cells and parasites.
Resumo:
Tese de doutoramento, Geologia (Geoquímica), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Background. Recent literature has identified that children's performance on cognitive (or problem-solving) tasks can be enhanced when undertaken as a joint activity among pairs of pupils. Performance on this ‘social’ activity will require quality relationships between pupils, leading some researchers to argue that friendships are characterized by these quality relationships and, therefore, that friendship grouping should be used more frequently within classrooms. Aims. Children's friendship grouping may appear to be a reasonable basis for cognitive development in classrooms, although there is only inconsistent evidence to support this argument. The inconsistency may be explained by the various bases for friendship, and how friendship is affected by cultural contexts of gender and schooling. This study questions whether classroom-based friendship pairings will perform consistently better on a cognitive task than acquaintance pairings, taking into account gender, age, and ability level of children. The study also explores the nature of school-based friendship described by young children. Sample. 72 children were paired to undertake science reasoning tasks (SRTs). Pairings represented friendship (versus acquaintance), sex (male and female pairings), ability (teacher-assessed high, medium, and low), and age (children in Years 1, 3, and 5 in a primary school). Method. A small-scale quasi-experimental design was used to assess (friendship- or acquaintance-based) paired performance on SRTs. Friendship pairs were later interviewed about qualities and activities that characterized their friendships. Results. Girls' friendship pairings were found to perform at the highest SRT levels and boys' friendship pairing performed at the lowest levels. Both boy and girl acquaintance pairings performed at mid-SRT levels. These findings were consistent across Year (in school) levels and ability levels. Interviews revealed that male and female friendship pairs were likely to participate in different types of activity, with girls being school-inclusive and boys being school-exclusive. Conclusion. Recommendations to use friendship as a basis for classroom grouping for cognitive tasks may facilitate performance of some pairings, but may also inhibit the performance of others. This is shown very clearly with regard to gender. Some of the difference in cognitive task performance may be explained by distinct, cultural (and social capital) orientations to friendship activities, with girls integrating school and educational considerations into friendship, and boys excluding school and educational considerations.
Resumo:
This chapter looks into the importance of having a clear identity of a boundary spanner in determining the role of the partners in a university-industry knowledge transfer programme. It highlights issues around the relationship between the business and the graduate as the boundary spanner, where the university's level of control differs between two programmes: Knowledge Transfer Partnership (KTP) and Knowledge Exchange and Enterprise Network (KEEN) programme. The four case studies illustrate interesting points since the university is the employer for the KTPs associate and the business is the employer for the KEEN associate, whilst successful KTP and KEEN projects rely on a full understanding of the role of the graduate within the business.
Resumo:
Four ruthenium(II) complexes with the formula [Ru(eta(5)-C(5)H(5))(PP)L][CF(3)SO(3)], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, 1; (PP = two triphenylphosphine molecules), L = 2,2'bipyridine, 2; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, 3; (PP = 1,2-bis(diphenylphosphine) ethane), L = 4-Methylpyridine, 4, were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC(50) values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin. (C) 2010 Elsevier Inc. All rights reserved.