993 resultados para Píndaro, ca. 518-ca. 438 a. C.


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2 scans - 1of2 =as photo appears today, 2of2 = auto color corrected

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oculomotor synergy as expressed by the CA/C and AC/A ratios was investigated to examine its influence on our previous observation that whereas convergence responses to stereoscopic images are generally stable, some individuals exhibit significant accommodative overshoot. Using a modified video refraction unit while viewing a stereoscopic LCD, accommodative and convergence responses to balanced and unbalanced vergence and focal stimuli (BVFS and UBVFS) were measured. Accommodative overshoot of at least 0.3 D was found in 3 out of 8 subjects for UBVFS. The accommodative response differential (RD) was taken to be the difference between the initial response and the subsequent mean static steady-state response. Without overshoot, RD was quantified by finding the initial response component. A mean RD of 0.11 +/- 0.27 D was found for the 1.0 D step UBVFS condition. The mean RD for the BVFS was 0.00 +/- 0.17 D. There was a significant positive correlation between CA/C ratio and RD (r = +0.75, n = 8, p <0.05) for only UBVFS. We propose that inter-subject variation in RD is influenced by the CA/C ratio as follows: an initial convergence response, induced by disparity of the image, generates convergence-driven accommodation commensurate with the CA/C ratio; the associated transient defocus subsequently decays to a balanced position between defocus-induced and convergence-induced accommodations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present evidence that the characteristic chemical signature (based on coupled benthic foraminiferal Cd/Ca and d13C) of Antarctic Intermediate waters (AAIW) penetrated throughout the intermediate depths of the Atlantic basin to the high-latitude North Atlantic during the abrupt cooling events of the last deglaciation: Heinrich 1 and the Younger Dryas. AAIW may play the dynamic counterpart to the "bipolar seesaw" when near-freezing salty bottom waters from the Antarctic (AABW) sluggishly ventilate the deep ocean. Our data reinforce the concept that interglacial circulation is stabilized by salinity feedbacks between salty northern sourced deep waters (NADW) and fresh southern sourced waters (AABW and AAIW). Further, the glacial ocean may be susceptible to the more finely balanced relative densities of NADW and AAIW, due to either freshwater input or a reversal of the salinity gradient, such that the ocean is poised for NADW collapse via a negative salinity feedback. The unstable climate of the glacial period and its termination may arise from the closer competition for ubiquity at intermediate depths between northern and southern sourced intermediate waters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemental abundance analysis of alpha- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade's window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (-1.5 < [Fe/H] < +0.5). A standard 1D local thermodynamic equilibrium analysis using both Kurucz and MARCS models yielded the abundances of O, Na, Mg, Al, Si, Ca, Ti and Fe. Our homogeneous and differential analysis of the Galactic stellar populations ensured that systematic errors were minimized. Results. We confirm the well-established differences for [alpha/Fe] at a given metallicity between the local thin and thick disks. For all the elements investigated, we find no chemical distinction between the bulge and the local thick disk, in agreement with our previous study of C, N and O but in contrast to other groups relying on literature values for nearby disk dwarf stars. For -1.5 < [Fe/H] < -0.3 exactly the same trend is followed by both the bulge and thick disk stars, with a star-to-star scatter of only 0.03 dex. Furthermore, both populations share the location of the knee in the [alpha/Fe] vs. [Fe/H] diagram. It still remains to be confirmed that the local thick disk extends to super-solar metallicities as is the case for the bulge. These are the most stringent constraints to date on the chemical similarity of these stellar populations. Conclusions. Our findings suggest that the bulge and local thick disk stars experienced similar formation timescales, star formation rates and initial mass functions, confirming thus the main outcomes of our previous homogeneous analysis of [O/Fe] from infrared spectra for nearly the same sample. The identical a-enhancements of thick disk and bulge stars may reflect a rapid chemical evolution taking place before the bulge and thick disk structures we see today were formed, or it may reflect Galactic orbital migration of inner disk/bulge stars resulting in stars in the solar neighborhood with thick-disk kinematics.