930 resultados para Overland journeys to the Pacific
Resumo:
Stable isotopic analyses of Middle Miocene to Quaternary foraminiferal calcite from east equatorial and central north Pacific DSDP cores have provided much new informatlon on the paleoceanography of the Pacific Neogene The history of delta18O change in planktonic foraminifera reflects the changing Isotopic composition and temperature of seawater at the time of test formation. Changes in the isotopic composition of benthonic foraminifera largely reflect changes m the volume of continental ice. Isotopic data from these cores indicates the following sequence of events related to continental glaciation (1) A permanent Antarctic ice sheet developed late in the Middle Miocene (about 13 to 11.5 m.y. ago) (2) The Late Miocene (about 11.5 to 5 m.y. ago) is marked by significant variation in delta18O of about 0.5? throughout, indicating instability of Antarctic ice cap size or bottom-water temperatures (3) The early Pliocene (5 to about 3 m.y. ago) was a time of relative stability in ice volume and bottom-water temperature (4) Growth of permanent Northern Hemisphere ice sheets is referred to have begun about 3 m.y. ago (5) The late Pliocene (3 to about 1.8 m.y. ago) is marked by one major glaciation or bottom-water cooling dated between about 2.1 to 2.3 m.y. (6) There is some evidence that the frequency of glacial-interglacial cycles increased at about 0.9 m.y. There is significant variation in delta13C at these sites but no geochemical interpretation is offered in this paper. The most outstanding feature of delta13C results is a permanent shift of about -0.8? found at about 6.5 m.y. in east equatorial and central north Pacific benthonic foraminifera. This benthonic carbon shift may form a useful marker in deep-sea cores recovering Late Miocene carbonates.
Resumo:
As a limiting nutrient to marine life, phosphorus (P) is an effective tracer of today's marine productivity. The distribution of P in marine sediments likewise tracks the history of marine productivity because of its relative insolubility in seawater. CaCO3, biogenic opal, terrigenous sediment, and total P have been measured in cores from nine Pacific sites (Deep Sea Drilling Project (DSDP) 65, 66, 310, 77, 62, 572, 463, 586, and GPC-3) and one subantarctic (DSDP 266) site. These sites were specifically chosen to provide information on biota burial flux changes with time for sedimentary sinks that represent key oceanographic variables, i.e., rate of upwelling, water depth, and carbonate dissolution gradient. The accumulation rates of these components for the last 10 Ma were then calculated from determined core age versus depth plots, core bulk density, and porosity data. The accumulation of P weakly correlates with that of CaCO3, moderately with that of total sediment, and very strongly with carbonate-free accumulation. Two prominent peaks for all components occur at 2-3 Ma and 5-6 Ma, and record the chemical loading of dissolved CaCO3, SiO2, and P from glacially emergent continental shelves. These results indicate that continental shelf phosphorites form during interglacially high sea levels and correspond to low deep-sea P accumulation rates, whereas glacially lowered sea levels allow for shelf bypassing and greater deep-sea P accumulation rates.
Resumo:
Compositional data for coexisting manganese nodules, micronodules, sediments and pore waters from five areas in the equatorial and S.W. Pacific have been obtained. This represents the largest study of its type ever undertaken to establish the distribution of elements between the various phases within the sediment column. The composition of manganese nodules, micronodules and sediments (on a carbonate-free basis) shows marked differences between the equatorial high productivity zone and the low productivity region of the S.W. Pacific. In the case of the nodules, th is reflects an increased supply of transition elements (notably Ni, Cu and Zn) to the nodules as a result of the in situ dissolution of siliceous tests within the sediment column in the equatorial Pacific high productivity zone. Micronodules display similar, but somewhat different, compositions to those of the associated nodules in each area. Micronodule composition is therefore influenced by the same basic factors that control nodule composition, but is modified by dissolution of the micronodules in situ within the sediment column. Locally, as in the area immediately south of the Marquesas Fracture Zone, the micronodule population is contaminated by small, angular volcanic rock fragments; this leads to apparently anomalous micronodule compositions. Micronodules appear to be a transient feature in the sediment column, especially in the equatorial Pacific. Dissolution of micronodules in the sediment column therefore represents an important source of elements for the growth of manganese nodules in the equatorial Pacific. Sediment composition is markedly influenced by the carbonate content. On a carbonate-free basis, the sediments from the equatorial high productivity zone are quite distinct in composition from those in the S.W. Pacific. This reflects differences in the lithology of the sediments. In the Aitutaki Passage, the local influence of volcanoclastic material in sediment composition has been established. The major cations and anions in pore waters measured here show no major differences between equatorial and S.W. Pacific sediments. Silica is, however, higher in equatorial Pacific pore waters reflecting the dissolution of siliceous tests in these sediments.
Resumo:
The object of the detailed investigations was an unusual material collected in the region of the Southern Basin of the Pacific Ocean floor, with features of intense manifestation of volcanic processes and subsequent hydrothermal alterations. These processes to a significant degree transformed the ferromanganese nodules and the pelagic sediments, causing the development of a new type of oceanic manganese mineralization.
Resumo:
The tolerance and physiological responses of the larvae of two congeneric gastropods, the intertidal Nassarius festivus and subtidal Nassarius conoidalis, to the combined effects of ocean acidification (PCO2 at 380, 950, 1250 ppm), temperature (15, 30 degrees C) and salinity (10, 30 psu) were compared. Results of three-way ANOVA on cumulative mortality after 72-h exposure showed significant interactive effects in which mortality increased with pCO(2) and temperature, but reduced at higher salinity for both species, with higher mortality being obtained for N. conoidalis. Similarly, respiration rate of the larvae increased with temperature and pCO(2) level for both species, with a larger percentage increase for N. conoidalis. Larval swimming speed increased with temperature and salinity for both species whereas higher pCO(2) reduced swimming speed in N. conoidalis but not N. festivus. The present findings indicated that subtidal congeneric species are more sensitive than their intertidal counterparts to the combined effects of these stressors. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This dataset contains photographs and videos snippets of all observations of incirrate octopods that were made during SONNE cruise SO242/2 to the DISCOL manganese nodule area in the Peru Basin, South Pacific (7°S, 88.5°W; 4150 m water depth). The photographs and videos were taken with the AWI Ocean Floor Observation System (OFOS "Launcher") and the GEOMAR Remotely Operated Vehicle (ROV "Kiel 6000").
Resumo:
This paper reviews the state of the art in processing and extraction of ocean floor manganese nodules. It briefly reviews the mining sites where the abundant rich nodules occur and also discusses the metal distribution in nodules in view of economical processing and extraction of these metal values. The paper discloses in a detailed manner the physical and chemical characteristics of nodules, including porosity, surface area, water content and the effect of temperature on crystal structure of major constituents of nodules. In the extraction aspect of nodules, the paper reviews two different extraction schemes revealed in the literature, namely hydrometallurgical treatment and pyrometallurgical treatment. The hydrometallurgical treatments include acid leaching, ammonia leaching, leaching with reducing agents and leaching after high temperature pre-treatments such as in sulfating rousting, while the pyrometallurgical processes include smelting, chlorination-vaporization and segregation. The paper also covers metal recovery processes from leach liquor. An economic survey of processing nodules has been made in terms of problems associated with metal-marketing, and impact of metal production from nodules on mineral industries.
Resumo:
Electron microprobe and X-ray diffraction data for north Pacific manganese nodules reveal that the transition metal distributions are controlled by the mineralogy. Microlayers rich in 10Å-manganates generally have high Mn/Fe ratios and positive correlations between Ni, Cu and Mn, and between Co and Fe. Microlayers rich in vernadite, on the other hand, show low Mn/Fe ratios, and Co, Ni and Cu all show positive correlations with Mn. The 10Å-manganates form mainly in porewaters with high Mn/Fe ratios. The Ni2+ and Cu2+ ions are post-depositionally incorporated into the interlayers of the manganates, whereas Co3+ is substituted for Fe3+ in ferric oxyhydroxides. In seawater with a low Mn/Fe ratio, on the other hand, the adsorption of positively charged ferric oxyhydroxides on negatively charged [MnO6] octahedral layers suppresses the growth of 10Å-manganates, enhancing the formation of vernadite. Positively charged hydroxides of Co3+, Ni2+ and Cu2+ are also adsorbed on the [MnO6] layers. These mechanisms of mineral formation and metal uptake are corroborated by data for other oceanic non-hydrothermal manganese nodules and crusts.
Resumo:
Considerable regional variations in the chemical composition of manganese nodules from a wide range of the Pacific Ocean have been observed. These variations can be more exactly expressed in terms of inter-element relationships. In particular, Cu-Mn and Cu-Ni associations reveal that Cu content in pelagic nodules increases rapidly in proportion to those of Mn or Ni. In nodules from continental borderland and hemipelagic areas, even if Mn or Ni contents increase, that of Cu increases only slightly. It is suggested that the considerable chemical differences within individual nodules and between nodules from the same site, at a limited pelagic area where there is no marked change in depositional conditions of nodules, are due to the role of hydrolyzable trace elements in the formation of nodules.
Resumo:
Mineralogical and chemical analyses performed on 67 ferromanganese nodules from widely varying locations and depths within the marine environment of the Pacific Ocean indicate that the minor element composition is controlled by the mineralogy and that the formation of the mineral phases is depth dependent. The pressure effect upon the thermodynamics or kinetics of mineral formation is suggested as the governing agent in the depth dependence of the mineralogy. The minor elements, Pb and Co, appear concentrated in the dMnO2 phase, whereas Cu and Ni are more or less excluded from this phase. In the manganites, Pb and Co are relatively low in concentration, whereas Cu and Ni are spread over a wide range of values. The oxidation of Pb and Co from divalent forms in sea water to higher states can explain their concentration in the dMnO2 phase.
Resumo:
Although various models have been proposed to explain the origin of manganese nodules (see Goldberg and Arrhenius), two major hypotheses have received extensive attention. One concept suggests that manganese nodules form as the result of interaction between submarine volcanic products and sea water. The common association of manganese nodules with volcanic materials constitutes the main evidence for this theory. The second theory involves a direct inorganic precipitation of manganese from sea water. Goldberg and Arrhenius view this process as the oxidation of divalent manganese to tetravalent manganese by oxygen under the catalytic action of particulate iron hydroxides. Manganese accumulation by the Goldberg and Arrhenius theory would be a relatively slow and comparatively steady process, whereas Bonatti and Nayudu believe manganese nodule formation takes place subsequent to the eruption of submarine volcanoes by the acidic leaching of lava.
Resumo:
The cores and dredges described are taken during the R/V Argo ZETES Expedition from March until August 1966 by the Scripps Institute of Oceanography. A total of 53 cores and dredges were recovered and are available at Scripps Institute of Oceanography for sampling and study.
Resumo:
Pelagic clay of the east-central Pacific province is shown to be a mixture of three primary detrital components, reflecting continental source areas in Asia, North America, and Central and South America. Relative contributions from each source area are a function of geography, and this distribution appears to have remained constant over the past five million years, despite changing flux rates. A Q-mode factor analysis of downcore records for Pb, Sr, and Nd isotopes identified three factors that account for 98% of the total variance. These factors represent the radiogenic isotopic signatures of 1) late Cenozoic Asian dust, which dominates in the central North Pacific; 2) North American continental hemipelagic/eolian sources, restricted mainly to the easternmost North Pacific at ~30 °N latitude; and 3) Central and South American sources, restricted to areas east of ~100 °W longitude. South of the Intertropical Convergence Zone (~6 °N), the Asian dust signature diminishes abruptly. We conclude that late Cenozoic Asian dust sources can be isotopically differentiated downcore from both North American and South and Central American sources in the eastcentral Pacific. This approach has a utility for identifying changes in long-term Cenozoic atmospheric circulation patterns.
Resumo:
The advent of next-generation sequencing has significantly reduced the cost of obtaining large-scale genetic resources, opening the door for genomic studies of non-model but ecologically interesting species. The shift in mating system, from outcrossing to selfing, has occurred thousands of times in angiosperms and is accompanied by profound changes in the population genetics and ecology of a species. A large body of work has been devoted to understanding why the shift occurs and the impact of the shift on the genetics of the resulting selfing populations, however, the causes and consequences of the transition to selfing involve a complicated interaction of genetic and demographic factors which are difficult to untangle. Abronia umbellata is a Pacific coastal dune endemic which displays a striking shift in mating system across its geographic range, with large-flowered outcrossing populations south of San Francisco and small-flowered selfing populations to the north. Abronia umbellata is an attractive model system for the study of mating system transitions because the shift appears to be recent and therefore less obscured by post-shift processes, it has a near one-dimensional geographic range which simplifies analysis and interpretation, and demographic data has been collected for many of the populations. In this study, we generated transcriptome-level data for 12 plants including individuals from both subspecies, along with a resequencing study of 48 individuals from populations across the range. The genetic analysis revealed a recent transition to selfing involving a drastic reduction in genetic diversity in the selfing lineage, potentially indicative of a recent population bottleneck and a transition to selfing due to reproductive assurance. Interestingly, the genetic structure of the populations was not coincident with the current subspecies demarcation, and two large-flowered populations were classified with the selfing subspecies, suggesting a potential need for re-evaluation of the current subspecies classification. Our finding of low diversity in selfing populations may also have implications for the conservation value of the threatened selfing subspecies.
Resumo:
An ethnobotanical survey of medicinal plants was carried out in the Central Middle Atlas in the years 2013 and 2014 to establish the catalog of medicinal plants used in traditional medicine in the treatment of diabetes. Thus, 1560 people were interviewed, using questionnaires. The latter enabled us to gather information on traditional healing practices of the local population including scientific name, French name, vernacular name, plant parts used , therapeutic indications , revenues and mode of administration. The results show that 76 medicinal species were inventoried in the study area. These plant species are included into 67 genus and 40 families. The most represented families are: Lamiaceae (12 species), Asteraceae and Brassicaceae species with 14 each. Of 76 medicinal species found in the region, four species are reported for the first time in the traditional treatment of diabetes in Morocco. They are Pistacia atlantica, Ptychotis verticillata, Anacyclus pyrethrum, Alyssum spinosum, Cistus albidus, Juniperus thurifera, Ephedra nebrodensis, Thymus algeriensis, Th. munbyanus, Th. zygis, Abelmoschus esculentus, Fraxinus augustifolia, Sorghum vulgare and, Eriobotrya japonica. The leaves are the most used organs (38%). The decoction is the dominant mode of preparation (50%) and administration is mostly for oral use (97%).