945 resultados para Ordered subsets – Expectation maximization (OS-EM)
Resumo:
An unsupervised learning procedure based on maximizing the mutual information between the outputs of two networks receiving different but statistically dependent inputs is analyzed (Becker S. and Hinton G., Nature, 355 (1992) 161). By exploiting a formal analogy to supervised learning in parity machines, the theory of zero-temperature Gibbs learning for the unsupervised procedure is presented for the case that the networks are perceptrons and for the case of fully connected committees.
Resumo:
Contrary to the long-received theory of FDI, interest rates or rates of return can motivate foreign direct investment (FDI) in concert with the benefits of direct ownership. Thus, access to investor capital and capital markets is a vital component of the multinational’s competitive market structure. Moreover, multinationals can use their superior financial capacity as a competitive advantage in exploiting FDI opportunities in dynamic markets. They can also mitigate higher levels of foreign business risks under dynamic conditions by shifting more financial risk to creditors in the host economy. Furthermore, the investor’s expectation of foreign business risk necessarily commands a risk premium for exposing their equity to foreign market risk. Multinationals can modify the profit maximization strategy of their foreign subsidiaries to maximize growth or profits to generate this risk premium. In this context, we investigate how foreign subsidiaries manage their capital funding, business risk, and profit strategies with a diverse sample of 8,000 matched parents and foreign subsidiary accounts from multiple industries in 38 countries.We find that interest rates, asset prices, and expectations in capital markets have a significant effect on the capital movements of foreign subsidiaries. We also find that foreign subsidiaries mitigate their exposure to foreign business risk by modifying their capital structure and debt maturity. Further, we show how the operating strategy of foreign subsidiaries affects their preference for growth or profit maximization. We further show that superior shareholder value, which is a vital link for access to capital for funding foreign expansion in open market economies, is achieved through maintaining stability in the rate of growth and good asset utilization.
Resumo:
A novel direct compression tableting excipient has been made by recrystallisation of lactose. The particles produced had high porosity, high specific surface area and high surface roughness. The resistance to segregation of ordered mixes formed between a model drug; potassium chloride and the excipients recrystallised lactose, spray crystallised maltose-dextrose (Emdexl and a direct compacting sugar (Dipac) was studied using a vibrational segregation model. The highly porous excipients, Emdex and recrystallised lactose formed ordered mixes which did not segregate even at high accelerations and low frequencies whereas the relatively smooth excipient, Dipac, displayed marked segregation in most vibration conditions. The vibrations were related to practical conditions measured in pharmaceutical process machinery. The time required to form an ordered mix was inversely related to the stability of the mix when subjected to vibration. An ultracentrifuge technique was developed to determine the interparticle adhesion forces holding drug and excipient particles together as ordered units. Excipient powders such as Emdex and recrystallised lactose, which formed non-segregating ordered mixes, had high interparticle adhesion forces. Other ordered mixes that segregated when subjected to different vibration conditions were found to have large quantities of weekly-bound drug particles; such mixes included those with Dipac as the carrier excipient as well as those containing a high concentration of drug. The electrostatic properties of different drug and excipient powders were studied using a Faraday well and an electrometer. Excipient powders such as Emdex and recrystallised lactose which formed stable ordered mixes also had a widely different surface charge in comparison with drug particles, whereas Dipac had a similar surface charge to the drug particles and formed unstable ordered mixes. A specially constructed triboelectric charging apparatus based on an air cyclone was developed to increase the affinity of drug particles for different excipient particles. Using triboelectrification to increase the interparticle adhesion forces, the segregation tendencies of unstable ordered mixes were greatly reduced. The stability of ordered mixes is shown to be related to both the surface physical characteristics and the surface electrical properties of the constituent carrier (excipientl particles.
Resumo:
This paper explores the use of the optimization procedures in SAS/OR software with application to the ordered weight averaging (OWA) operators of decision-making units (DMUs). OWA was originally introduced by Yager (IEEE Trans Syst Man Cybern 18(1):183-190, 1988) has gained much interest among researchers, hence many applications such as in the areas of decision making, expert systems, data mining, approximate reasoning, fuzzy system and control have been proposed. On the other hand, the SAS is powerful software and it is capable of running various optimization tools such as linear and non-linear programming with all type of constraints. To facilitate the use of OWA operator by SAS users, a code was implemented. The SAS macro developed in this paper selects the criteria and alternatives from a SAS dataset and calculates a set of OWA weights. An example is given to illustrate the features of SAS/OWA software. © Springer-Verlag 2009.
Resumo:
This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.
Resumo:
Direct quantile regression involves estimating a given quantile of a response variable as a function of input variables. We present a new framework for direct quantile regression where a Gaussian process model is learned, minimising the expected tilted loss function. The integration required in learning is not analytically tractable so to speed up the learning we employ the Expectation Propagation algorithm. We describe how this work relates to other quantile regression methods and apply the method on both synthetic and real data sets. The method is shown to be competitive with state of the art methods whilst allowing for the leverage of the full Gaussian process probabilistic framework.
Resumo:
The component spectra of a mixture of isomers with nearly identical diffusion coefficients cannot normally be distinguished in a standard diffusion-ordered spectroscopy (DOSY) experiment but can often be easily resolved using matrix-assisted DOSY, in which diffusion behaviour is manipulated by the addition of a co-solute such as a surfactant. Relatively little is currently known about the conditions required for such a separation, for example, how the choice between normal and reverse micelles affects separation or how the isomer structures themselves affect the resolution. The aim of this study was to explore the application of sodium dodecyl sulfate (SDS) normal micelles in aqueous solution and sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) aggregates in chloroform, at a range of concentrations, to the diffusion resolution of some simple model sets of isomers such as monomethoxyphenols and short chain alcohols. It is shown that SDS micelles offer better resolution where these isomers differ in the position of a hydroxyl group, whereas AOT aggregates are more effective for isomers differing in the position of a methyl group. For both the normal SDS micelles and the less well-defined AOT aggregates, differences in the resolution of the isomers can in part be rationalised in terms of differing degrees of hydrophobicity, amphiphilicity and steric effects. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Diffusion-ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix-assisted DOSY (MAD), in which diffusion is perturbed by the addition of a co-solute such as a surfactant [R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548-4550]. However, little is known about the conditions required for such a separation, for example, the concentrations and concentration ratios of surfactant and solutes. The aim of this study was to explore the concentration range over whichmatrix-assisted DOSY using the surfactant SDS can achieve diffusion resolution of a simple model set of isomers, the monomethoxyphenols. The results show that the separation is remarkably robust with respect to both the concentrations and the concentration ratios of surfactant and solutes, supporting the idea that MAD may become a valuable tool formixture analysis. © 2010 John Wiley & Sons, Ltd.
Resumo:
Diffusion-ordered NMR spectroscopy ("DOSY") is a useful tool for the identification of mixture components. In its basic form it relies on simple differences in hydrodynamic radius to distinguish between different species. This can be very effective where species have significantly different molecular sizes, but generally fails for isomeric species. The use of surfactant co-solutes can allow isomeric species to be distinguished by virtue of their different degrees of interaction with micelles or reversed micelles. The use of micelle-assisted DOSY to resolve the NMR spectra of isomers is illustrated for the case of the three dihydroxybenzenes (catechol, resorcinol, and hydroquinone) in aqueous solution containing sodium dodecyl sulfate micelles, and in chloroform solution containing AOT reversed micelles. © 2009 American Chemical Society.
Resumo:
Appealingly simple: A new method is described that allows the diffusion coefficient of a small molecule to be estimated given only the molecular weight and the viscosity of the solvent used. This method makes possible the quantitative interpretation of the diffusion domain of diffusion-ordered NMR spectra (see picture). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
An alkali- and nitrate-free hydrotalcite coating has been grafted onto the surface of a hierarchically ordered macroporous-mesoporous SBA-15 template via stepwise growth of conformal alumina adlayers and their subsequent reaction with magnesium methoxide. The resulting low dimensional hydrotalcite crystallites exhibit excellent per site activity for the base catalysed transesterification of glyceryl triolein with methanol for FAME production.
Resumo:
Incorporating further information into the ordered weighted averaging (OWA) operator weights is investigated in this paper. We first prove that for a constant orness the minimax disparity model [13] has unique optimal solution while the modified minimax disparity model [16] has alternative optimal OWA weights. Multiple optimal solutions in modified minimax disparity model provide us opportunity to define a parametric aggregation OWA which gives flexibility to decision makers in the process of aggregation and selecting the best alternative. Finally, the usefulness of the proposed parametric aggregation method is illustrated with an application in metasearch engine. © 2011 Elsevier Inc. All rights reserved.
Resumo:
Objective: Previous studies have suggested that somatoform disorders (SFD) might be associated with changes in the function of the central and autonomic nervous systems. The aim of this study was to examine the possible immunological differences between SFD and healthy controls. Methods: Twenty-four patients with SFD and 13 healthy individuals completed the psychological questionnaires to assess symptom reporting [Symptom Checklist-90 Revised (SCL-90-R)] and to diagnose for SFD [Screening for Somatoform Symptoms scale (SOMS-scale)]. Participants also provided a blood sample taken in the morning, which was analysed with an automated cell counter to determine the number of leucocytes per μl and with flow cytometry to determine lymphocyte subsets. Results: With the exception of a higher T4/T8 ratio in the patient group, which was mainly because of lower CD8 counts, there were no significant differences in the absolute number of lymphocytes (subsets) between patients with SFD and healthy subjects. A positive correlation between B-lymphocyte subsets (CD19+CD22+, CD19+CD5+, CD19+CD3-) to all scales of the SCL-90-R, except somatisation, were found in SFD. Additionally, a positive correlation was found in SFD between CD14+CD16+ monocytes and somatisation (0.573) on the SCL-90-R scale. Conclusion: These data indicate that patients with SFD have an enhanced humoral immunity as shown by increased B-cell numbers and furthermore an elevated T4/T8 ratio because of lower CD8 suppressor cells. Further studies will be required to determine whether these alterations in lymphocyte subsets are directly involved in the pathophysiology of SFD. © 2007 Blackwell Munksgaard.