908 resultados para Optimized eco-productive paradigm
Resumo:
Over the last few decades, China has seen a steep rise in diverse eco city and low carbon city policies. Recently, attention has begun to focus on the perceived shortcomings in the practical delivery of related initiatives, with several publications suggesting a gap between ambitious policy goals and the emerging realities of the newly built environment. To probe this further, in this article we examine – based on the policy network approach – how the gap between high-level national policies and local practice implementation can be explained in the current Chinese context. We develop a four-pronged typology of eco city projects based on differential involvement of key (policy) actor groups, followed by a mapping of what are salient policy network relations among these actors in each type. Our analysis suggests that, within the overall framework of national policy, a core axis in the network relations is that between local government and land developers. In some cases, central government agencies– often with buy-in from international architecture, engineering and consulting firms – seek to influence local government planning through various incentives aimed at rendering sustainability a serious consideration. However, this is mostly done in a top-down manner, which overemphasizes a rational, technocratic planning mode while underemphasizing interrelationships among actors. This makes the emergence of a substantial implementation gap in eco city practice an almost predictable outcome. Consequently, we argue that special attention be paid in particular to the close interdependency between the interests of local government actors and those of land and real estate developers. Factoring in this aspect of the policy network is essential if eco city implementation is to gain proper traction on the ground.
Resumo:
A growing body of critical literature seeks to identify conceptual and practical problems accompanying the realisation of mainstream ‘eco-city’ initiatives around the world. However, little attention has been paid to the status of the ‘city’ itself within the broader discourse. If eco-cities are to be more than experimental ‘technological showcases’, and aim to transform urban life more generally, the question of what types of ‘cityness’ will ensue is of considerable importance. To effect a more significant sustainability transition, eco-city plans and policies may need somehow to encompass a more nuanced conceptualisation of cities as complex, unpredictable, and emergent spaces. The incompatibility of such a conceptualisation with liberal-modernist modes of planning means that radically innovative new approaches to eco-city development may need to be found. This thesis considers whether the eco-city, theorised as a multiple process of real-world experimentation, may shed some light on how ‘cityness’ might better be planned for in future. To do so, it conceptualises cityness through the lens of ‘publicness’. It makes an original contribution to knowledge by developing a new theoretical model of publicness as an ‘assemblage’ of space and behaviour, with an ‘emergent’ and ‘civic’ modality. It thereby extends recent debates over the idea of ‘urban assemblage’, and makes innovative links between theories of planning and of the public. This model informs the analysis of original empirical research, investigating the conceptualisation of the public in an international sample of official eco-city documents, and exploring the publicness of two implemented initiatives, in Portland, Oregon (US) and newly built Sejong City (South Korea). The research finds that publicness tends to be poorly articulated in mainstream eco-city plans and policies, with potentially negative implications for sustainability in the ‘urban age’. However, it also argues that state institution-led planning – even when experimental ‘governance’ approaches are adopted – may inevitably be limited in its ability to encompass the emergent public life of the city. The thesis concludes by considering the prospects for overcoming or more productively acknowledging these limits in future.
Resumo:
Dissertação de natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.
Resumo:
The need to increase agricultural yield led, among others, to an increase in the consumption of nitrogen based fertilizers. As a consequence, there are excessive concentrations of nitrates, the most abundant of the reactive nitrogen (Nr) species, in several areas of the world. The demographic changes and projected population growth for the next decades, and the economic shifts which are already shaping the near future are powerful drivers for a further intensification in the use of fertilizers, with a predicted increase of the nitrogen loads in soils. Nitrate easily diffuses in the subsurface environments, portraying high mobility in soils. Moreover, the presence of high nitrate loads in water has the potential to cause an array of health dysfunctions, such as methemoglobinemia and several cancers. Permeable Reactive Barriers (PRB) placed strategically relatively to the nitrate source constitute an effective technology to tackle nitrate pollution. Ergo, PRB avoid various adverse impacts resulting from the displacement of reactive nitrogen downstream along water bodies. A four stages literature review was carried out in 34 databases. Initially, a set of pertinent key words were identified to perform the initial databases searches. Then, the synonyms of those initial key words were used to carry out a second set of databases searches. The third stage comprised the identification of other additional relevant terms from the research papers identified in the previous two stages. Again, databases searches were performed with this third set of key words. The final step consisted of the identification of relevant papers from the bibliography of the relevant papers identified in the previous three stages of the literature review process. The set of papers identified as relevant for in-depth analysis were assessed considering a set of relevant characterization variables.
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
This paper discusses the development of modular solutions for eco low-cost houses based on a pre-fabricated modular wall system environmentally sustainable, socioeconomically competitive and geared towards developing African nations with a housing deficit. The key point to the research of a modular wall solution is a structural layer complemented with local and materials made by non-specialized workforce. This wall also meets also hydrothermal acoustic and mechanical properties. Thus,the solution also offers good safety and interior comfort conditions to its users while maintaining the flexibility to expand the size of the house. Parameters as dimensions, materials and constructive processes of the existing housing stock were studied. Features such as the family size, typology, different uses, common materials, existing regulations, minimal living conditions, safety and comfort have also been considered to achieve the most efficient solution.
Resumo:
4th Conference COST ACTION FP1303 – Designing with Bio-based Materials – Challenges and opportiunities. INIA – CSIC, Madrid, 24-25 February 2016. Book of abstracts, T.Troya, J.Galván, D.Jones (Eds.), INIA and IETcc – CSIS, pg. 79-80 (ISBN: 978-91-88349-16-3)
Resumo:
The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.
Resumo:
At the beginning of the 21st century, a new social arrangement of work poses a series of questions and challenges to scholars who aim to help people develop their working lives. Given the globalization of career counseling, we decided to address these issues and then to formulate potentially innovative responses in an international forum. We used this approach to avoid the difficulties of creating models and methods in one country and then trying to export them to other countries where they would be adapted for use. This article presents the initial outcome of this collaboration, a counseling model and methods. The life-designing model for career intervention endorses five presuppositions about people and their work lives: contextual possibilities, dynamic processes, non-linear progression, multiple perspectives, and personal patterns. Thinking from these five presuppositions, we have crafted a contextualized model based on the epistemology of social constructionism, particularly recognizing that an individual's knowledge and identity are the product of social interaction and that meaning is co-constructed through discourse. The life-design framework for counseling implements the theories of self-constructing [Guichard, J. (2005). Life-long self-construction. International Journal for Educational and Vocational Guidance, 5, 111-124] and career construction [Savickas, M. L. (2005). The theory and practice of career construction. In S. D. Brown & R. W. Lent (Eds.), Career development and counselling: putting theory and research to work (pp. 42-70). Hoboken, NJ: Wiley] that describe vocational behavior and its development. Thus, the framework is structured to be life-long, holistic, contextual, and preventive.