917 resultados para Optimization algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superstructure approaches are the solution to the difficult problem which involves the rigorous economic design of a distillation column. These methods require complex initialization procedures and they are hard to solve. For this reason, these methods have not been extensively used. In this work, we present a methodology for the rigorous optimization of chemical processes implemented on a commercial simulator using surrogate models based on a kriging interpolation. Several examples were studied, but in this paper, we perform the optimization of a superstructure for a non-sharp separation to show the efficiency and effectiveness of the method. Noteworthy that it is possible to get surrogate models accurate enough with up to seven degrees of freedom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimized structure of the educational program consisting of a set of the interconnected educational objects is offered by means of problem solution of optimum partition of the acyclic weighed graph. The condition of acyclicity preservation for subgraphs is formulated and the quantitative assessment of decision options is executed. The original algorithm of search of quasioptimum partition using the genetic algorithm scheme with coding chromosomes by permutation is offered. Object-oriented realization of algorithm in language C++ is described and results of numerical experiments are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connection establishment is a fundamental function for any connection-oriented network protocol and the efficiency of this function defines the flexibility and responsiveness of the protocol. This process initializes data transmission and performs transmission parameters negotiation, what makes it mandatory process and integral part of entire transmission. Thus, the duration of the connection establishment will affect the transmission process duration. This paper describes an implementation of a handshake algorithm, designed for connection with multiple peers, that is used in Reliable Multi-Destination Transport(RMDT) protocol, its optimization and testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is an emerging coherence-domain technique capable of in vivo imaging of sub-surface structures at millimeter-scale depth. Its steady progress over the last decade has been galvanized by a breakthrough detection concept, termed spectral-domain OCT, which has resulted in a dramatic improvement of the OCT signal-to-noise ratio of 150 times demonstrated for weakly scattering objects at video-frame-rates. As we have realized, however, an important OCT sub-system remains sub-optimal: the sample arm traditionally operates serially, i.e. in flying-spot mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. The proposed technique, termed Fourier-domain OCT, offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems, and represents the main thrust of this paper. Fourier-domain OCT is described, and its basic theoretical aspects, including the reconstruction algorithm, are discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameterless self-organizing map (PLSOM) is a new neural network algorithm based on the self-organizing map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighborhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The algorithm resembles back-propagation in that an error function is minimized using a gradient-based method, but the optimization is carried out in the hidden part of state space either instead of, or in addition to weight space. Computational results are presented for some simple dynamical training problems, one of which requires response to a signal 100 time steps in the past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The method resembles back-propagation in that it is a least-squares, gradient-based optimization method, but the optimization is carried out in the hidden part of state space instead of weight space. A straightforward adaptation of this method to feedforward networks offers an alternative to training by conventional back-propagation. Computational results are presented for simple dynamical training problems, with varied success. The failures appear to arise when the method converges to a chaotic attractor. A patch-up for this problem is proposed. The patch-up involves a technique for implementing inequality constraints which may be of interest in its own right.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A formalism recently introduced by Prugel-Bennett and Shapiro uses the methods of statistical mechanics to model the dynamics of genetic algorithms. To be of more general interest than the test cases they consider. In this paper, the technique is applied to the subset sum problem, which is a combinatorial optimization problem with a strongly non-linear energy (fitness) function and many local minima under single spin flip dynamics. It is a problem which exhibits an interesting dynamics, reminiscent of stabilizing selection in population biology. The dynamics are solved under certain simplifying assumptions and are reduced to a set of difference equations for a small number of relevant quantities. The quantities used are the population's cumulants, which describe its shape, and the mean correlation within the population, which measures the microscopic similarity of population members. Including the mean correlation allows a better description of the population than the cumulants alone would provide and represents a new and important extension of the technique. The formalism includes finite population effects and describes problems of realistic size. The theory is shown to agree closely to simulations of a real genetic algorithm and the mean best energy is accurately predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate a digital back-propagation simplification method to enable computationally-efficient digital nonlinearity compensation for a coherently-detected 112 Gb/s polarization multiplexed quadrature phase shifted keying transmission over a 1,600 km link (20x80km) with no inline compensation. Through numerical simulation, we report up to 80% reduction in required back-propagation steps to perform nonlinear compensation, in comparison to the standard back-propagation algorithm. This method takes into account the correlation between adjacent symbols at a given instant using a weighted-average approach, and optimization of the position of nonlinear compensator stage to enable practical digital back-propagation.