990 resultados para Optical instruments.
Resumo:
In recent years there has been a growing recognition that many people with drug or alcohol problems are also experiencing a range of other psychiatric and psychological problems. The presence of concurrent psychiatric or psychological problems is likely to impact on the success of treatment services. These problems vary greatly, from undetected major psychiatric illnesses that meet internationally accepted diagnostic criteria such as those outlined in the Diagnostic and Statistical Manual (DSM-IV) of the American Psychiatric Association (1994), to less defined feelings of low mood and anxiety that do not meet diagnostic criteria but nevertheless impact on an individual’s sense of wellbeing and affect their quality of life. Similarly, the presence of a substance misuse problem among those suffering from a major psychiatric illness, often goes undetected. For example, the use of illicit drugs such as cannabis and amphetamine is higher among those individuals suffering from schizophrenia (Hall, 1992) and the misuse of alcohol in people suffering from schizophrenia is well documented (e.g., Gorelick et al., 1990; Searles et al., 1990; Soyka et al., 1993). High rates of alcohol misuse have also been reported in a number of groups including women presenting for treatment with a primary eating disorder (Holderness, Brooks Gunn, & Warren, 1994), individuals suffering from post-traumatic stress disorder (Seidel, Gusman and Aubueg, 1994), and those suffering from anxiety and depression. Despite considerable evidence of high levels of co-morbidity, drug and alcohol treatment agencies and mainstream psychiatric services often fail to identify and respond to concurrent psychiatric or drug and alcohol problems, respectively. The original review was conducted as a first step in providing clinicians with information on screening and diagnostic instruments that may be used to assess previously unidentified co-morbidity. The current revision was conducted to extend the original review by updating psychometric findings on measures in the original review, and incorporating other frequently used measures that were not previously included. The current revision has included information regarding special populations, specifically Indigenous Australians, older persons and adolescents. The objectives were to: ● update the original review of AOD and psychiatric screening/diagnostic instruments, ● recommend when these instruments should be used, by whom and how they should be interpreted, ● identify limitations and provide recommendations for further research, ● refer the reader to pertinent Internet sites for further information and/or purchasing of assessment instruments.
Resumo:
The optical properties of Bi(2)V(1-x)MnxO(5.5-x) (x=0.05, 0.1, 0.15 and 0.2 at.%) thin films fabricated by pulsed laser deposition on platinized Silicon Substrates were Studied in UV-visible spectral region (1.51-4.17 CV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Psi and Delta) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn Content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Apart from their intrinsic physical interest, spin-polarized many-body effects are expected to be important to the working of spintronic devices. A vast literature exists on the effects of a spin-unpolarized electron-hole plasma on the optical properties of a semiconductor. Here, we include the spin degree of freedom to model optical absorption of circularly polarized light by spin-polarized bulk GaAs. Our model is easy to implement and does not require elaborate numerics, since it is based on the closed-form analytical pair-equation formula that is valid in 3d. The efficacy of our approach is demonstrated by a comparison with recent experimental data.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
Apart from their intrinsic physical interest, spin-polarized many-body effects are expected to be important to the working of spintronic devices. A vast literature exists on the effects of a spin-unpolarized electron-hole plasma on the optical properties of a semiconductor. Here, we include the spin degree of freedom to model optical absorption of circularly polarized light by spin-polarized bulk GaAs. Our model is easy to implement and does not require elaborate numerics, since it is based on the closed-form analytical pair-equation formula that is valid in 3d. The efficacy of our approach is demonstrated by a comparison with recent experimental data.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
ZnO nanostructures were deposited on flexible polymer sheet and cotton fabrics at room temperature by activated reactive evaporation. Room-temperature photoluminescence spectrum of ZnO nanostructured film exhibited a week intrinsic UV emission and a strong broad yellow-orange visible emission. TEM and HRTEM studies show that the grown nanostructures are crystalline in nature and their growth direction was indentified to be along [002]. ZnO nanostructures grown on the copper-coated flexible polymer sheets exhibited stable field-emissio characteristics with a threshold voltage of 2.74 V/mu m (250 mu A) and a very large field enhancement factor (beta) of 23,213. Cotton fabric coated with ZnO nanostructures show an excellent antimicrobial activity against Staphylococcus aureus bacteria (Gram positive), and similar to 73% reduction in the bacterial population is achieved compared to uncoated fabrics after 4 h in viability. Using a shadow mask technique, we also selectively deposited the nanostructures at room temperature on polymer substrates.
Resumo:
The variations in certain spin-Hamiltonian parameters of the Cu++ ion in dibarium copper formate tetrahydrate with temperature have been studied. Optical absorption investigations on single crystals of the salt at room temperature and 90° K. are reported. The results are discussed in terms of a model in which vibronic mixing of certain electron levels of the Cu++ ion play an important role.
Resumo:
ESR investigations at X band and optical-absorption measurements have been reported in single crystals of copper (n) diethyldithiocarbamate Cu[S 2CN(C2H5)2]2 diluted to 0.2% with the corresponding zinc complex. The measurements have been made both at room and liquid-oxygen temperatures. ESR measurements gave the following values for the parameters in spin Hamiltonian g11=2.1085, g=2.023(6), A63= 142.4×10-4 cm-1, A65 = 152.0×10-4 cm-1, B = 22.4×10-4 cm-1, Q~3×10-4 cm-1. Polarized optical absorption study has made possible a proper assignment of the absorption bands to their corresponding transitions. This has led to information regarding the ordering of the MO levels of the complex. The coefficients used in the MO description of the complex have been calculated from the observed parameters. The results show that the metal ligand BIσ bond is purely covalent and that the out-of-plane w bonding is appreciably covalent whereas the in-plane Π bonding is ionic. Further, it is noted that the metal ligand binding is more covalent with sulfur as ligand than with oxygen or nitrogen.
Resumo:
The pulse-echo apparatus, designed and constructed by the author, has been used to reinvestigate the elastic properties of the eighteen optical glasses. The elastic constants are correct to 0·5%. The results are compared with the earlier investigation which utilised the optical method. The possible causes for large discrepancies observed are critically and briefly discussed. A qualitative interpretation of the results has been successfully attempted. The acoustic velocity increases with the decrease in lead and barium oxides and with increase in calcium oxide and boron trioxide components.
Resumo:
A series of 2′-5′-oligoguanylic acids are prepared by reacting G(cyclic)p with takadiastase T1 ribonuclease and separating the products chromatographically. The 3′-5′-oligoguanylic acids are obtained by separating the products of alkaline degradation of 3′-5′-poly(G). The optical rotatory dispersion and hypochromism of both 2′-5′- and 3′-5′-oligoguanylic acids are studied at two different pH. The optical rotatory dispersion spectrum of 2′-5′-GpG is significantly different from that of 3′-5′-GpG. The magnitude of rotation of the long-wavelength peak of 2′-5′-GpG is larger than that of 3′-5′-GpG. This finding contradicts the explanation that the extra stability and more intense circular dichroism band of other 3′-5′-dinucleoside monophosphates is due to H-bond formation between 2′-OH and either the base or the phosphate oxygen. The end phosphate group has a marked effect on the spectrum of GpG between 230 and 250 mμ. In addition the optical rotatory dispersion spectra of 2′-5′ exhibit strong pH, temperature, and solvent dependence between 230 and 250 mμ. ΔH and AS for order ⇌ disorder transition is estimated to be 9.7 kcal/mole and 35.2 eu, respectively. The optical rotatory dispersion spectra of guanine-rich oligoribonucleotides, GpGpC, GpGpU, GpGpGpC, and GpGpGpU are compared to the calculated optical rotatory dispersion from the semiempirical expression of Cantor and Tinoco, using measured optical rotatory dispersion of dimers. Contrary to previous studies, agreement is found not at all satisfactory. However, optical rotatory dispersion of 3′-5′-GpGpGpC and GpGpGpU can be estimated from the semiempirical expression, if a next-nearest interaction parameter is introduced empirically. Such interaction parameter can be calculated from the measured properties of trinucleotide sequences like GpGpG, GpGpC, and GpGpU, assuming that only the nearest-neighbor interaction is important. The optical rotatory dispersion of single-stranded poly(G) is also predicted. The importance of syn-anti equilibrium and next-nearest-neighbor interaction in oligoguanylic acids is suggested as a probable explanation.
Resumo:
From symmetry considerations and using generalized Onsager relations, it is shown that 66 of the 90 magnetic classes, consisting of 29 single colour and 37 double colour ones, can exhibit what may be called the strain gyrotropic rotation. Similarly, 69 of the 90 magnetic classes, consisting of 21 single colour and 48 double colour ones, can exhibit what may be called the strain gyrotropic birefringence. A crystal in the class m3 or m3 m is interesting as it can exhibit strain gyrotropic rotation despite its being cubic and incapable of exhibiting gyrotropic rotation in the unstressed state. Similarly, a crystal in the class m3 m, is interesting as it can exhibit strain gyrotropic birefringence despite its being cubic and incapable of exhibiting gyrotropic birefringence in the unstressed state.