960 resultados para Optical glass
Resumo:
The role of the Sm3+ ions in the structure of vitreous Sm2O3•4P2O5 has been investigated using the neutron diffraction anomalous dispersion technique, which employs the wavelength dependence of the real and imaginary parts of the neutron scattering length close to an absorption resonance. The data described here represent the first successful complete neutron anomalous dispersion study on an amorphous material. This experimental methodology permits one to determine exclusively the closest Sm• •• Sm separation. Knowledge of the R•••R (R = rare-earth) pairwise correlation is key to understanding the optical and magnetic properties of rare-earth phosphate glasses. The anomalous difference correlation function, ΔT''(r), shows a dominant feature pertaining to a Sm•••Sm separation, centred at 4.8 Å. The substantial width and marked asymmetry of this peak indicates that the minimum approach of Sm3+ ions could be as close as 4 Å. Information on other pairwise correlations is also revealed via analysis of T (r) and ΔT (r) correlation functions: Sm3+ ions display an average co-ordination number, n Sm(O), of 7, with a mean Sm–O bond length of 2.375(5) Å whilst the PO4 tetrahedra have a mean P–O bond length of 1.538(2) Å. Second- and third-neighbour correlations are also identified. These results corroborate previous findings. Such consistency lends support to the application of the anomalous dispersion technique to determine separations.
Resumo:
This paper provides a review of the current state of research and development into polymer fibre Bragg gratings, along with a description of some current challenges. © 2012 OSA.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
The impact of third-order dispersion (TOD) on optical rogue wave phenomenon is investigated numerically. We validate the TOD coefficient by utilizing the eigenvalue of the associated equation of the nonlinear Schrödinger equation (NLSE). © 2014 OSA.
Resumo:
We present the development and simplification of label-free fiber optic biosensors based on immobilization of oligonucleotides on dual-peak long period gratings (dLPGs). This improvement is the result of a simplification of biofunctionalization methodology. A one-step 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated reaction has been developed for the straightforward immobilization of unmodified oligonucleotides on the glass fiber surface along the grating region, leading to covalent attachment of a 5´-phosphorylated probe oligonucleotide to the amino-derivatized fiber grating surface. Immobilization is achieved via a 5´phosphate-specific linkage, leaving the remainder of the oligonucleotide accessible for binding reactions. The dLPG has been tested in different external media to demonstrate its inherent ultrahigh sensitivity to the surrounding-medium refractive index (RI) achieving 50- fold improvement in RI sensitivity over the previously-published LPG sensor in media with RI’s relevant to biological assays. After functionalization, the dLPG biosensor was used to monitor the hybridization of complementary oligonucleotides showing a detectable oligonucleotide concentration of 4 nM. The proposed one-step EDC reaction approach can be further extended to develop fiber optic biosensors for disease analysis and medical diagnosis with the advances of label-free, real-time, multiplex, high sensitivity and specificity.
Resumo:
We report an optical spectrum analyzer utilizing direct side-tapping by a 45° tilted fiber grating. The angular dispersion is analyzed and 45° is found to give highest dispersion. High resolution up to 0.13nm was obtained. © 2012 Optical Society of America.
Resumo:
Optical fibre based sensors are transforming industry by permitting monitoring in hitherto inaccessible environments or measurement approaches that cannot be reproduced using conventional electronic sensors. A multitude of techniques have been developed to render the fibres sensitive to a wide range of parameters including: temperature, strain, pressure (static and dynamic), acceleration, rotation, gas type, and specific biochemical species. Constructed entirely of glass or polymer material, optical fibre devices like fibre gratings offer the properties: low loss, dielectric construction, small size, multiplexing, and so on [1-3]. In this paper, the authors will show the latest developing industrial applications, using polymer optical fibre (POF) devices, and comparing their performance with silica optical fibre devices. The authors address two pressing commercial requirements. The first concerns the monitoring of fuel level in civil aircraft. There is a strong motivation in the aerospace industry to move away from electrical sensors, especially in the fuel system. This is driven by the need to eliminate potential ignition hazards, the desire to reduce cabling weight and the need to mitigate the effects of lightning strikes in aircraft where the conventional metallic skin is increasingly being replaced by composite materials. In this case, the authors have developed pressure sensors based on a diaphragm in which a polymer fibre Bragg grating (POFBG) has been embedded [3]. These devices provide high pressure sensitivity enabling level measurement in the mm range. Also, it has developed an approach incorporating several such sensors which can compensate for temperature drifts and is insensitive to fluid density. Compared with silica fibre-based sensors, their performance is highly enhanced. Initial results have attracted the interest of Airbus from UK, who is keen to explore the potential of optical technology in commercial aircraft. The second concerns the monitoring of acoustic signals and vibration in the subsea environment, for applications in geophysical surveying and security (detection of unwanted craft or personnel). There is strong motivation to move away from electrical sensors due to the bulk of the sensor and associated cabling and the impossibility of monitoring over large distances without electrical amplification. Optical approaches like optical hydrophones [5] offer a means of overcoming these difficulties. In collaboration with Kongsberg from Norway, the authors will exploit the sensitivity improvements possible by using POF instead of silica fibre. These improvements will arise as a result of the much more compliant nature of POF compared to silica fibre (3 GPa vs 72 GPa, respectively). Essentially, and despite the strain sensitivity of silica and POFBGs being very similar, this renders the POF much more sensitive to the applied stress resulting from acoustic signals or vibration. An alternative way of viewing this is that the POF is better impedance-matched to the surrounding environment (water for the intended applications), because although its impedance is higher than that of water, it is nearly an order of magnitude smaller than that of silica. Finally, other future industrial applications will be presented and discussed, showing the vast range of the optical fiber devices in sensing applications.
Resumo:
The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.
Resumo:
Au cours des années une variété des compositions de verre chalcogénure a été étudiée en tant qu’une matrice hôte pour les ions Terres Rares (TR). Pourtant, l’obtention d’une matrice de verre avec une haute solubilité des ions TR et la fabrication d’une fibre chalcogénure dopée au TR avec une bonne qualité optique reste toujours un grand défi. La présente thèse de doctorat se concentre sur l’étude de nouveaux systèmes vitreux comme des matrices hôtes pour le dopage des ions TR, ce qui a permis d’obtenir des fibres optiques dopées au TR qui sont transparents dans l’IR proche et moyenne. Les systèmes vitreux étudiés ont été basés sur le verre de sulfure d’arsenic (As2S3) co-dopé aux ions de Tm3+ et aux différents modificateurs du verre. Premièrement, l’addition de Gallium (Ga), comme un co-dopant, a été examinée et son influence sur les propriétés d’émission des ions de Tm a été explorée. Avec l’incorporation de Ga, la matrice d’As2S3 dopée au Tm a montré trois bandes d’émission à 1.2 μm (1H5→3H6), 1.4 μm (3H4→3F4) et 1.8 μm (3F4→3H6), sous l’excitation des longueurs d’onde de 698 nm et 800 nm. Les concentrations de Tm et de Ga ont été optimisées afin d’obtenir le meilleur rendement possible de photoluminescence. À partir de la composition optimale, la fibre Ga-As-S dopée au Tm3+ a été étirée et ses propriétés de luminescence ont été étudiées. Un mécanisme de formation structurale a été proposé pour ce système vitreux par la caractérisation structurale des verres Ga-As-S dopés au Tm3+, en utilisant la spectroscopie Raman et l’analyse de spectrométrie d’absorption des rayons X (EXAFS) à seuil K d’As, seuil K de Ga et seuil L3 de Tm et il a été corrélé avec les caractéristiques de luminescence de Tm. Dans la deuxième partie, la modification des verres As2S3 dopés au Tm3+, avec l’incorporation d’halogénures (Iode (I2)), a été étudiée en tant qu’une méthode pour l’adaptation des paramètres du procédé de purification afin d’obtenir une matrice de verre de haute pureté par distillation chimique. Les trois bandes d’émission susmentionnées ont été aussi bien observées pour ce système sous l’excitation à 800 nm. Les propriétés optiques, thermiques et structurelles de ces systèmes vitreux ont été caractérisées expérimentalement en fonction de la concentration d’I2 et de Tm dans le verre, où l’attention a été concentrée sur deux aspects principaux: l’influence de la concentration d’I2 sur l’intensité d’émission de Tm et les mécanismes responsables pour l’augmentation de la solubilité des ions de Tm dans la matrice d’As2S3 avec l’addition I2.
Resumo:
The main task is to analyze the state of the art of grating couplers production and low-cost polymer substrates. Then to provide a recommendation of a new or adapted process for the production of metallic gratings on polymer sheets, based on a Failure Mode and Effect Analysis (FMEA). In order to achieve that, this thesis is divided into four chapters. After the first introductory chapter, the second section provides details about the state-of-the-art in optical technology platforms with focus on polymers and their main features for the aimed application, such as flexibility, low cost and roll to roll compatibility. It defines then the diffraction gratings and their specifications and closes with the explanation of adhesion mechanisms of inorganic materials on polymer substrates. The third chapter discusses processing of grating couplers. It introduces the basic fabrication methods and details a selection of current fabrication schemes found in literature with an assessment of their potential use for the desired application. The last chapter is a FMEA analysis of the retained fabrication process, called Flip and Fuse, in order to check its capability to realize the grating structure.
Resumo:
Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.
Resumo:
Poster presented at the 24th Annual Meeting of the Portuguese Dental Association, Lisbon, 12-14 November 2015.