814 resultados para Optical detection systems
Resumo:
The use of 0.02nm bandwidth optical bandpass filters with 0.01nm wavelength offsets from optical carrier wavelengths in the optical OFDM (OOFDM) transmitter improves optical power budgets by 7dB at a total channel BER of 1×10 -3 in directly modulated laser-based IMDD PON systems. ©2010 Optical Society of America.
Resumo:
We present a theoretical investigation of the influence of a non-reacted Si layer on the transport and optical properties of CoSi2/Si1-xGex Schottky barrier diodes grown from Co/Si/Si1-xGex systems. The presence of this layer reduces the effect of the lowering of the Schottky barrier height which would be expected in a CoSi2/Si1-xGex. However, due to the small thickness of this Si layer, the charge carriers are able to tunnel through it. This tunneling process allows for a significant lowering of the Schottky barrier height and therefore an extension of the detection regime into the infrared. © 1996 American Institute of Physics.
Resumo:
Planar integrated free-space optical systems are well suited for a variety of applications, such as optical interconnects and security devices. Here, we demonstrate dynamic functionality of such microoptical systems by the integration of adaptive liquid-crystal-devices. © 2007 Optical Society of America.
Resumo:
This paper reviews the development of system techniques using advanced modulation formats that have arisen in recent years for use in datacommunications. Simulations are provided to allow comparison of the emerging schemes. © OSA/OFC/NFOEC 2011.
Resumo:
Flow measurement data at the district meter area (DMA) level has the potential for burst detection in the water distribution systems. This work investigates using a polynomial function fitted to the historic flow measurements based on a weighted least-squares method for automatic burst detection in the U.K. water distribution networks. This approach, when used in conjunction with an expectationmaximization (EM) algorithm, can automatically select useful data from the historic flow measurements, which may contain normal and abnormal operating conditions in the distribution network, e.g., water burst. Thus, the model can estimate the normal water flow (nonburst condition), and hence the burst size on the water distribution system can be calculated from the difference between the measured flow and the estimated flow. The distinguishing feature of this method is that the burst detection is fully unsupervised, and the burst events that have occurred in the historic data do not affect the procedure and bias the burst detection algorithm. Experimental validation of the method has been carried out using a series of flushing events that simulate burst conditions to confirm that the simulated burst sizes are capable of being estimated correctly. This method was also applied to eight DMAs with known real burst events, and the results of burst detections are shown to relate to the water company's records of pipeline reparation work. © 2014 American Society of Civil Engineers.
Resumo:
Broadband radio over fiber systems, which can simultaneously distribute multiple wireless services and enable remote sensing, are reviewed. The systems are used to demonstrate improved remote passive RFID tag detection through the use of multiple antennas. © 2009 Optical Society of America.
Resumo:
This paper presents a wavelength coded optical timedomain reflectometry based on optical heterodyne technique. In this scheme, the probe and reference optical pulses have different wavelengths. This enables optical heterodyne detection to be used to improve the system performances significantly. We demonstrate a spatial resolution of 2.5 m within a range of 60 km in weak-reflection signal detection and direct observation of Brillouin scattering over a long optical fiber, suggesting online fiber sensing possible. The principle of wavelength coding is applicable to other systems like lidar and radar to increase receiver sensitivity and simplify system structure.
Resumo:
This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.
Resumo:
We have investigated the dressed effects of non-degenerate four-wave mixing (NDFWM) and demonstrated a phase-sensitive method of studying the fifth-order nonlinear susceptibility due to atomic coherence in RN-type four-level system. In the presence of a strong coupling field, NDFWM spectrum exhibits Autler-Townes splitting, accompanied by either suppression or enhancement of the NDFWM signal, which is directly related to the competition between the absorption and dispersion contributions. The heterodyne-detected nonlinear absorption and dispersion of six-wave mixing signal in the RN-type system show that the hybrid radiation-matter detuning damping oscillation is in the THz range and can be controlled and modified through the colour-locked correlation of twin noisy fields.
Resumo:
A rapid and simple analytical method was developed for the simultaneous and quantitative determination and separation of hydrophilic imidazolium ionic liquids (ILs) (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl; 1-hexyl-3-methylimidazolium chloride, [C(6)mim]Cl; 1-octyl-3-methylimidazolium chloride, [C(8)mim]Cl; 1-allyl-3-methylimidazolium chloride, [Amim]Cl; or 1-allyl-3-methylimidazolium bromide, [Amim]Br) with miscible ethyl acetate and EtOH and their mixtures using reverse phase liquid chromatography coupled with refractive index detection (RPLC-RI). The influence of 60 to 100% (volume percentage) methanol in the mobile phase on the IL systems ([C(4)mim]Cl, [C(6)mim]Cl, [C(8)mim]Cl, [Amim]Br, or [Amim]Cl)-ethyl acetate-EtOH was investigated.