483 resultados para Ok Tedi orebody
Resumo:
Not distributed to depository libraries in a physical form, <2001->
Resumo:
Continuation of the Teriitorial Reports (00ok (Ter.) Board of Agriculture)
Resumo:
Shipping list no.: 98-0052-P (pt. 1), 98-0155-P (pt. 2).
Resumo:
The progression of renal disease correlates strongly with hypertension and the degree of proteinuria, suggesting a link between excessive Na+ reabsorption and exposure of the proximal tubule to protein. The present study investigated the effects of albumin on cell growth and Na+ uptake in primary cultures of human proximal tubule cells (PTC). Albumin (1.0 mg/ml) increased cell proliferation to 134.1 +/- 11.8% (P < 0.001) of control levels with no change in levels of apoptosis. Exposure to 0.1 and 1.0 mg/ml albumin increased total Na-22(+) uptake to 119.1 &PLUSMN; 6.3% (P = 0.005) and 115.6 &PLUSMN; 5.3% (P < 0.006) of control levels, respectively, because of an increase in Na+/H+ exchanger isoform 3 (NHE3) activity. This was associated with an increase in NHE3 mRNA to 161.1 +/- 15.1% (P < 0.005) of control levels in response to 0.1 mg/ml albumin. Using confocal microscopy with a novel antibody raised against the predicted extracellular NH2 terminus of human NHE3, we observed in nonpermeabilized cells that exposure of PTC to albumin (0.1 and 1.0 mg/ml) increased NHE3 at the cell surface to 115.4 &PLUSMN; 2.7% (P < 0.0005) and 122.4 +/- 3.7% (P < 0.0001) of control levels, respectively. This effect was paralleled by significant increases in NHE3 in the subplasmalemmal region as measured in permeabilized cells. These albumin-induced increases in expression and activity of NHE3 in PTC suggest a possible mechanism for Na+ retention in response to proteinuria.
Resumo:
Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have isolated the human sulfate anion transporter cDNA (hsat-1; SCL26A1) and gene (SAT1), determined its protein function in Xenopus oocytes and characterized SAT1 promoter activity in mammalian renal cell lines. hsat-1 encodes a protein of 75 kDa, with 12 putative transmembrane domains, that induces sulfate, chloride, and oxalate transport in Xenopus oocytes. hsat-1 mRNA is expressed most abundantly in the kidney and liver, with lower levels in the pancreas, testis, brain, small intestine, colon, and lung. The SAT1 gene is comprised of four exons stretching 6 kb in length, with an alternative splice site formed from an optional exon. SAT1 5' flanking region led to promoter activity in renal OK and LLC-PK1 cells. Using SAT1 5' flanking region truncations, the first 135 bp was shown to be sufficient for basal promoter activity. Mutation of the activator protein-1 (AP-1) site at position 252 in the SAT1 promoter led to loss of transcriptional activity, suggesting its requirement for SAT1 basal expression. This study represents the first functional characterization of the human SAT1 gene and protein encoded by the anion transporter hsat-1.
Resumo:
Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.
Resumo:
Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl- channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 mug/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 mug/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.
Resumo:
One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.
Resumo:
The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl- channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney ( OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.
Resumo:
Evidence for the presence of storage pits described in Hittite texts by the Sumerogram "ÉSAG" is presented from Kaman-Kalehöyük, a multi-period tell site in central Turkey occupied during the second and first millennia BC. Small earthen pits matching the description of "ÉSAG" were part of the normal suite of domestic installations at the site throughout the period. Similar to pits seen across western Eurasia, they were probably used to store seed corn or seed for trade. Large earthen pits (>7m in diameter) were also present that matched the description of the "ÉSAG" form, and in some cases contained archaeological cereal remains. Evidence from Kaman shows "ÉSAG" were part of Anatolian life for at least 4,000 years and suggests that the term was generic for lined, earthen storage pits. The presence of so many small pits at Kaman-Kalehöyük showed that it was an agricultural production site for much of its existence. The appearance of the large pits, confined to the Hittite period, reflects centralised control of grain supply, probably by the Hittite Kingdom, and fits a pattern seen at other sites in the region during the second millennium BC. /// Hitit metinlerinde Sumerogram "ÉSAG" ile tanimlanan depo çukurlarinin varliğina dair kanit, Orta Anadolu'da M.Ö. İkinci ve Birinci binde iskan edilmiş çok dönemli bir yerleşim alani olan Kaman-Kalehöyük'ten taninmaktadir. Küçük toprak çukurlar "ÉSAG" in tanimlamasina uygun olarak bu dönem süresince normal ev düzeninin bir parçasi olarak karşimiza çikmiştir. Çukurlar, Bati Avrasya'daki benzer çukurlar gibi olasilikla ticaret maksadi ile misir tohumu ya da tohum muhafaza etmişlerdir. "ÉSAG" formunun tanimina uyan büyük toprak çukurlara (çapi 7m. den büyük) rağmen bunlarin tahil depolama ile ilgili bağlantilari tam olarak belirlenmemiştir. Kaman'daki delil, "ÉSAG" in en az 4,000 yildir Anadolu yaşaminin bir parçasi olduğunu ve bu sözcüğün sivanmiş toprak çukurlar için kullanildiğini işaret etmektedir. Kaman-Kalehöyük'te ele geçen birçok küçük çukur, yerleşimin varliğini sürdürdüǧü sürecin büyük bir bölümünde zirai üretim yapildiğini göstermektedir. Hitit Döneminde büyük çukurlarin ortaya çikmasi muhtemelen Hitit Kralliği tarafindan gerçekleştirilen tahil tedarikinin merkezi kontrolünü yansitmakta ve M.Ö. İkinci binde bu bölgedeki diğer yerleşim alanlarinda görülen şekle uymaktadir.
Resumo:
Investment in mining projects, like most business investment, is susceptible to risk and uncertainty. The ability to effectively identify, assess and manage risk may enable strategic investments to be sheltered and operations to perform closer to their potential. In mining, geological uncertainty is seen as the major contributor to not meeting project expectations. The need to assess and manage geological risk for project valuation and decision-making translates to the need to assess and manage risk in any pertinent parameter of open pit design and production scheduling. This is achieved by taking geological uncertainty into account in the mine optimisation process. This thesis develops methods that enable geological uncertainty to be effectively modelled and the resulting risk in long-term production scheduling to be quantified and managed. One of the main accomplishments of this thesis is the development of a new, risk-based method for the optimisation of long-term production scheduling. In addition to maximising economic returns, the new method minimises the risk of deviating from production forecasts, given the understanding of the orebody. This ability represents a major advance in the risk management of open pit mining.
Resumo:
The up-regulation and trafficking of tissue transglutaminase (TG2) by tubular epithelial cells (TEC) has been implicated in the development of kidney scarring. TG2 catalyses the crosslinking of proteins via the formation of highly stable e(?-glutamyl) lysine bonds. We have proposed that TG2 may contribute to kidney scarring by accelerating extracellular matrix (ECM) deposition and by stabilising the ECM against proteolytic decay. To investigate this, we have studied ECM metabolism in Opossum kidney (OK) TEC induced to over-express TG2 by stable transfection and in tubular cells isolated from TG2 knockout mice. Increasing the expression of TG2 led to increased extracellular TG2 activity (p < 0.05), elevated e(?-glutamyl) lysine crosslinking in the ECM and higher levels of ECM collagen per cell by 3H-proline labelling. Immunofluorescence demonstrated that this was attributable to increased collagen III and IV levels. Higher TG2 levels were associated with an accelerated collagen deposition rate and a reduced ECM breakdown by matrix metalloproteinases (MMPs). In contrast, a lack of TG2 was associated with reduced e(?-glutamyl) lysine crosslinking in the ECM, causing reduced ECM collagen levels and lower ECM per cell. We report that TG2 contributes to ECM accumulation primarily by accelerating collagen deposition, but also by altering the susceptibility of the tubular ECM to decay. These findings support a role for TG2 in the expansion of the ECM associated with kidney scarring.
Resumo:
Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.
Resumo:
Günümüzde e-perakendeciler tüketicilerin isteklerine cevap verdiklerini iddia ederken, acaba tüketicilere yegane seçenekleri sunmakta olduklarini göz ardi mi ediyorlar? Özellikle gelisen pazar sartlarinda, kamusal alanlarin özellestirilmesi ve güvenlikli sitelerin insasi ile tüketicilerin geo-demografik özellikleri degisirken vakti kisitli ama alim gücü yüksek bireylerin katma degerli farkli hizmet seçenekleri beklentisi içerisine girmelerine yol açiyor. Ancak, günümüzde perakendecilerin yeni e-market uygulamalarina gösterdikleri direnç, modern e-tüketicilerin nitelikli ürün ve servis firsatlarindan faydalanmasini engelliyor. Bilgi ve iletisim teknolojilerindeki son gelismeler, e-kanallar söz konusu oldugunda lojistik aginin küçük ölçekli nitelikli ürünlere yönelik mikro düzeyde degerlendirilmesi gerekmekte ve kentsel yenilenme, e-perakende firmalari, lojistik saglayicilar ve kentsel planlamacilar arasinda bir isbirligi ihtiyaci dogurmaktadir. Ancak öte yandan hizla degisen perakende yapisi içerisinde, yerel cografyanin etkisini ve çoklu iliskileri anlama konusunda e-kanallarda varlik gösteren bu üç oyuncunun gösterdigi karsilikli direnç de önemli bir role sahip olarak ortaya çikmakta. Süreci yöneten üç aktörün dinamik bir pazar yapisi içerisinde e-market dagitim planlama ve uygulama süreçlerine gösterdikleri direnç detayli olarak incelenmelidir. Peki, ucunda daha iyi hizmet verebilmek, daha çok kazanç elde etmek de olsa çoklu entegrasyona ve isbirliksel ortakliga gösterilen bu çift tarafli direncin sebepleri acaba nedir?
Resumo:
PURPOSE. To compare axial length growth between white children with myopia wearing orthokeratology contact lenses (OK) and distance single-vision spectacles (SV) over a 2-year period. METHODS. Subjects 6 to 12 years of age with myopia -0.75 to -4.00 diopters of sphere (DS) and astigmatism ≤1.00 diopters of cylinder (DC) were prospectively allocated OK or SV correction. Measurements of axial length (Zeiss IOLMaster), corneal topography, and cycloplegic refraction were taken at 6-month intervals. RESULTS. Thirty-one children were fitted with OK and 30 with SV. Following 24 months, axial length increased significantly over time for both the OK group (0.47 mm) and SV group (0.69 mm; P < 0.001), with a significant interaction between time and group (P = 0.05) reflecting a greater increase in the SV group. Significant differences in refraction were found over time, between groups and for the interaction between time and group for spherical (all P < 0.001) but not cylindrical components of refraction (all P > 0.05). Significantly greater corneal flattening was evident in the OK group for the flatter and steeper corneal powers and for corneal shape factor (all P ≤0.05). CONCLUSIONS. Orthokeratology contact lens wear reduces axial elongation in comparison to distance single-vision spectacles in children. © 2012 The Association for Research in Vision and Ophthalmology, Inc.