958 resultados para OXIDE SYNTHASE EXPRESSION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and purpose: Recent findings suggest that the noxious gas H(2)S is produced endogenously, and that physiological concentrations of H(2)S are able to modulate pain and inflammation in rodents. This study was undertaken to evaluate the ability of endogenous and exogenous H(2)S to modulate carrageenan-induced synovitis in the rat knee. Experimental approach: Synovitis was induced in Wistar rats by intra-articular injection of carrageenan into the knee joint. Sixty minutes prior to carrageenan injection, the rats were pretreated with indomethacin, an inhibitor of H(2)S formation (dl-propargylglycine) or an H(2)S donor [Lawesson`s reagent (LR)]. Key results: Injection of carrageenan evoked knee inflammation, pain as characterized by impaired gait, secondary tactile allodynia of the ipsilateral hindpaw, joint swelling, histological changes, inflammatory cell infiltration, increased synovial myeloperoxidase, protein nitrotyrosine residues, inducible NOS (iNOS) activity and NO production. Pretreatment with LR or indomethacin significantly attenuated the pain responses, and all the inflammatory and biochemical changes, except for the increased iNOS activity, NO production and 3-NT. Propargylglycine pretreatment potentiated synovial iNOS activity (and NO production), and enhanced macrophage infiltration, but had no effect on other inflammatory parameters. Conclusions and implications: Whereas exogenous H(2)S delivered to the knee joint can produce a significant anti-inflammatory and anti-nociceptive effect, locally produced H(2)S exerts little immunomodulatory effect. These data further support the development and use of H(2)S donors as potential alternatives (or complementary therapies) to the available anti-inflammatory compounds used for treatment of joint inflammation or relief of its symptoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O-GlcNAcylation augments vascular contractile responses, and O-GlcNAc-proteins are increased in the vasculature of deoxycorticosterone-acetate salt rats. Because endothelin 1 (ET-1) plays a major role in vascular dysfunction associated with salt-sensitive forms of hypertension, we hypothesized that ET-1-induced changes in vascular contractile responses are mediated by O-GlcNAc modification of proteins. Incubation of rat aortas with ET-1 (0.1 mu mol/L) produced a time-dependent increase in O-GlcNAc levels and decreased expression of O-GlcNAc transferase and beta-N-acetylglucosaminidase, key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine vasoconstriction (maximal effect [in moles]: 19 +/- 5 versus 11 +/- 2 vehicle). ET-1 effects were not observed when vessels were previously instilled with anti-O-GlcNAc transferase antibody or after incubation with an O-GlcNAc transferase inhibitor (3-[2-adamantanylethyl]-2-[{4-chlorophenyl}azamethylene]-4-oxo-1,3-thiazaperhyd roine-6-carboxylic acid; 100 mu mol/L). Aortas from deoxycorticosterone-acetate salt rats, which exhibit increased prepro-ET-1, displayed increased contractions to phenylephrine and augmented levels of O-GlcNAc proteins. Treatment of deoxycorticosterone-acetate salt rats with an endothelin A antagonist abrogated augmented vascular levels of O-GlcNAc and prevented increased phenylephrine vasoconstriction. Aortas from rats chronically infused with low doses of ET-1 (2 pmol/kg per minute) exhibited increased O-GlcNAc proteins and enhanced phenylephrine responses (maximal effect [in moles]: 18 +/- 2 versus 10 +/- 3 control). These changes are similar to those induced by O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate, an inhibitor of beta-N-acetylglucosaminidase. Systolic blood pressure (in millimeters of mercury) was similar between control and ET-1-infused rats (117 +/- 3 versus 123 +/- 4 mm Hg; respectively). We conclude that ET-1 indeed augments O-GlcNAc levels and that this modification contributes to the vascular changes induced by this peptide. Increased vascular O-GlcNAcylation by ET-1 may represent a mechanism for hypertension-associated vascular dysfunction or other pathological conditions associated with increased levels of ET-1. (Hypertension. 2010; 55: 180-188.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Objective: Cyclosporine A treatment is important in the therapy of a number of medical conditions; however, alveolar bone loss is an important negative side-effect of this drug. As such, we evaluated whether concomitant administration of simvastatin would minimize cyclosporine A-associated alveolar bone loss in rats subjected, or not, to experimental periodontal disease. Material and Methods: Groups of 10 rats each were treated with cyclosporine A (10 mg/kg/day), simvastatin (20 mg/kg/day), cyclosporine A and simvastatin concurrently (cyclosporine A/simvastatin) or vehicle for 30 days. Four other groups of 10 rats each received a cotton ligature around the lower first molar and were treated similarly with cyclosporine A, simvastatin, cyclosporine A/simvastatin or vehicle. Calcium (Ca(2+)), phosphorus and alkaline phosphatase levels were evaluated in serum. Expression levels of interleukin-1 beta, prostaglandin E(2) and inducible nitric oxide synthase were evaluated in the gingivomucosal tissues. Bone volume and numbers of osteoblasts and osteoclasts were also analyzed. Results: Treatment with cyclosporine A in rats, with or without ligature, was associated with bone loss, represented by a lower bone volume and an increase in the number of osteoclasts. Treatment with cyclosporine A was associated with bone resorption, whereas simvastatin treatment improved cyclosporine A-associated alveolar bone loss in all parameters studied. In addition, simvastatin, in the presence of inflammation, can act as an anti-inflammatory agent. Conclusion: This study shows that simvastatin therapy leads to a reversal of the cyclosporine A-induced bone loss, which may be mediated by downregulation of interleukin-1 beta and prostaglandin E(2) production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperglycemia, which increases O-linked beta-N-acetylglucosamine (O-GlcNAc) proteins, leads to changes in vascular reactivity. Because vascular dysfunction is a key feature of arterial hypertension, we hypothesized that vessels from deoxycorticosterone acetate and salt (DOCA-salt) rats exhibit increased O-GlcNAc proteins, which is associated with increased reactivity to constrictor stimuli. Aortas from DOCA rats exhibited increased contraction to phenylephrine (E(max) [mN] = 17.6 +/- 4 versus 10.7 +/- 2 control; n = 6) and decreased relaxation to acetylcholine (47.6 +/- 6% versus 73.2 +/- 10% control; n = 8) versus arteries from uninephrectomized rats. O- GlcNAc protein content was increased in aortas from DOCA rats (arbitrary units = 3.8 +/- 0.3 versus 2.3 +/- 0.3 control; n = 5). PugNAc (O- GlcNAcase inhibitor; 100 mu mol/L; 24 hours) increased vascular O- GlcNAc proteins, augmented phenylephrine vascular reactivity (18.2 +/- 2 versus 10.7 +/- 3 vehicle; n = 6), and decreased acetylcholine dilation in uninephrectomized (41.4 +/- 6 versus 73.2 +/- 3 vehicle; n = 6) but not in DOCA rats (phenylephrine, 16.5 +/- 3 versus 18.6 +/- 3 vehicle, n = 6; acetylcholine, 44.7 +/- 8 versus 47.6 +/- 7 vehicle, n = 6). PugNAc did not change total vascular endothelial nitric oxide synthase levels, but reduced endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) phosphorylation (P < 0.05). Aortas from DOCA rats also exhibited decreased levels of endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) (P < 0.05) but no changes in total endothelial nitric oxide synthase or Akt. Vascular O-GlcNAc-modified endothelial nitric oxide synthase was increased in DOCA rats. Blood glucose was similar in DOCA and uninephrectomized rats. Expression of O- GlcNAc transferase, glutamine: fructose-6-phosphate amidotransferase, and O- GlcNAcase, enzymes that directly modulate O-GlcNAcylation, was decreased in arteries from DOCA rats (P < 0.05). This is the first study showing that O-GlcNAcylation modulates vascular reactivity in normoglycemic conditions and that vascular O- GlcNAc proteins are increased in DOCA-salt hypertension. Modulation of increased vascular O-GlcNAcylation may represent a novel therapeutic approach in mineralocorticoid hypertension. (Hypertension. 2009; 53: 166-174.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O-linked N-acetylglucosaminylation (O-GlcNAcylation) plays a role in many aspects of protein function. Whereas elevated O-GlcNAc levels contribute to diabetes-related end-organ damage, O-GlcNAcylation is also physiologically important. Because proteins that play a role in vascular tone regulation can be O-GlcNAcylated, we hypothesized that O-GlcNAcylation increases vascular reactivity to constrictor stimuli, Aortas front male Sprague-Dawley rats and C57BL/6 mice were incubated for 24 hours with vehicle or PugNAc (O-GlcNAcase inhibitor. 100 mu M). PugNAc incubation significantly increased O-GlcNAc proteins, as determined by Western blot. PugNAc also increased vascular contractions to phenylephrine and serotonin, an effect not observed in the presence of N(omega)-nitro-L-arginine methyl ester or in endothelium-denuded vessels. Acetylcholine-induced relaxation. but not that to sodium nitroprusside, was decreased by PugNAc treatment, an effect accompanied by decreased levels of phosphorylated endothelial nitric oxide synthase (eNOS)(Ser-1177) and Akt(Ser-473). Augmented O-GlcNAcylation increases vascular reactivity to constrictor stimuli, possibly due to its effects oil eNOS expression and activity, reinforcing the concept that O-GlcNAcylation modulates vascular reactivity and may play a role in pathological conditions associated with abnormal vascular function. J Am Soc Hypertens 2008:2(6): 410-417. (C) 2008 American Society of Hypertension. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective and design: Knowing that hyperglycemia is a hallmark of vascular dysfunction in diabetes and that neonatal streptozotocin-induced diabetic rats (n-STZ) present reduced inflammatory response, we decided to evaluate the effect of chlorpropamide-lowered blood glucose levels on carrageenan-induced rat paw edema and pleural exudate in n-STZ. Materials: Diabetes was induced by STZ injection (160 mg/kg, ip) in neonates (2-day-old) Wistar rats. Treatment: n-STZ diabetic rats were treated with chlorpropamide (200 mg/kg, 15 d, by gavage) 8 weeks after STZ injection. Methods: Carrageenan-induced paw edema and pleural exudate volumes were assessed concomitantly with peripheral and exudate leukocyte count. We also evaluated the expression of inducible nitric oxide synthase (iNOS) in lungs of all experimental groups. Results: Chlorpropamide treatment improved glucose tolerance, beta-cell function (assessed by HOMA-beta), corrected paw edema, and pleural exudate volume in n-STZ. Neither leukocyte count nor iNOS expression were affected by diabetes or by chlorpropamide treatment. Conclusion: Chlorpropamide treatment by restoring beta-cell function, reducing blood sugar levels, and improving glucose tolerance might be contributing to the correction of the reduced inflammatory response tested as paw edema and pleural exudate in n-STZ diabetic rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Primary sensory afferent neurons modulate the hyperdynamic circulation in Cirrhotic rats with portal hypertension.The stomach of cirrhotic rats is prone to damage induced by ethanol, a phenomenon associated with reduced gastric hyperemic response to acid-back diffusion. The aim of this study was to examine the impact of ablation of capsaicin-sensitive neurons and the tachykinin NK(1) receptor antagonist A5330 on the susceptibility of the portal hypertensive gastric mucosa, to ethanol-induced injury and its effects on gastric cyclooxygenase (COX) and nitric oxide synthase (NOS) mRNA expression. Capsaicin was administered to neonatal, male, Wistar rats and the animals were allowed to grow. Cirrhosis was then induced by bile duct ligation in adult rats while controls had sham operation. Ethanol-induced gastric damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured as well as COX/NOS mRNA expression. Topical application of ethanol produced significant gastric damage in cirrhotic rats compared to controls, which was reversed in capsaicin- and A5330-treated animals. Mean arterial and portal pressure was normalized in capsaicin-treated cirrhotic rats. Capsaicin and A5330 administration restored gastric blood flow responses to topical application of ethanol followed by acid in cirrhotic rats. Differential COX and NOS mRNA expression was noted in bile duct ligated rats relative to controls. Capsaicin treatment significantly modified gastric eNOS/iNOS/COX-2 mRNA expression in cirrhotic rats. Capsaicin-sensitive neurons modulate the susceptibility of the portal hypertensive gastric mucosa to injury induced by ethanol via tachykinin NK(1) receptors and signalling of prostaglandin and NO production/release. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of nitric oxide (NO) in granulomas of Paracoccidioides brasiliensis-infected inducible NO synthase-deficient C57BL/6 mice (iNOS KO) and their wild-type counterparts and its association with osteopontin (OPN) and matrix metalloproteinases (MMPs) was studied. At 15 days after infection (DAI), iNOS KO mice showed compact and necrotic granulomas with OPN+ macrophages and multinucleated giant cells, whereas wild-type mice developed loose granulomas with many fungi and OPN+ cells distributed throughout the tissue. In addition, high OPN levels and fungal load were observed in iNOS KO mice. Both experimental groups had MMP-9 activity. At 120 DAI, iNOS KO had smaller granulomas with OPN+ cells, lower OPN levels, lower fungal load and decreased MMP-9 activity compared with wild-type mice. These findings suggest that NO has an important role in granuloma modulation, by controlling OPN and MMP production, as well as by inducing loose granulomas formation and fungal dissemination, resulting, at later phases, in progression of paracoccidioidomycosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) inhibitors are largely used to evaluate the NO contribution to pulmonary allergy, but contrasting data have been reported. In this study, pharmacological, biochemical and pharmacokinetic assays were performed to compare the effects of acute and long-term treatment of BALB/C mice with the non-selective NOS inhibitor L-NAME in ovalbumin (OVA)-challenged mice. Acute L-NAME treatment (50 mg/kg, gavage) significantly reduced the eosinophil number in bronchoalveolar lavage fluid (BALF). The inducible NOS (iNOS) inhibitor aminoguanidine (20 mg/kg/day in the drinking water) also significantly reduced the eosinophil number in BALF In contrast, 3-week L-NAME treatment (50 and 150 mg/kg/day in the drinking water) significantly increased the pulmonary eosinophil influx. The constitutive NOS (cNOS) activity in brain and lungs was reduced by both acute and 3-week L-NAME treatments. The pulmonary iNOS activity was reduced by acute L-NAME (or aminoguanidine), but unaffected by 3-week L-NAME treatment. Acute L-NAME (or aminoguanidine) treatment was more efficient to reduce the NO(x) levels compared with 3-week L-NAME treatment. The pharmacokinetic study revealed that L-NAME is not bioavailable when given orally. After acute L-NAME intake, serum concentrations of the metabolite N(omega)-nitro-L-arginine decreased from 30 min to 24 h. In the 3-week L-NAME treatment, the N(omega)-nitro-L-arginine concentration was close to the detection limit. In conclusion, 3-week treatment with L-NAME yields low serum N(omega)-nitro-L-arginine concentrations, causing preferential inhibition of cNOS activity. Therefore, eosinophil influx potentiation by 3-week L-NAME treatment may reflect removal of protective cNOS-derived NO, with no interference on the ongoing inflammation due to iNOS-derived NO. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent evidence suggests that angiotensin II (Ang II) upregulates phosphodiesterase (PDE) 1A expression. We hypothesized that Ang II augmented PDE1 activation, decreasing the bioavailability of cyclic guanosine 3` 5`-monophosphate (cGMP), and contributing to increased vascular contractility. Male Sprague-Dawley rats received mini-osmotic pumps with Ang II (60 ng.min(-1)) or saline for 14 days. Phenylephrine (PE)-induced contractions were increased in aorta (E(max)168%+/- 8% vs 136%+/- 4%) and small mesenteric arteries (SMA; E(max)170%+/- 6% vs 143%+/- 3%) from Ang II-infused rats compared to control. PDE1 inhibition with vinpocetine (10 mu mol/L) reduced PE-induced contraction in aortas from Ang II rats (E(max)94%+/- 12%) but not in controls (154%+/- 7%). Vinpocetine decreased the sensitivity to PE in SMA from Ang II rats compared to vehicle (-log of half maximal effective concentration 5.1 +/- 0.1 vs 5.9 +/- 0.06), but not in controls (6.0 +/- 0.03 vs 6.1 +/- 0.04). Sildenafil (10 mu mol/L), a PDE5 inhibitor, reduced PE-induced maximal contraction similarly in Ang II and control rats. Arteries were contracted with PE (1 mu mol/L), and concentration-dependent relaxation to vinpocetine and sildenafil was evaluated. Aortas from Ang II rats displayed increased relaxation to vinpocetine compared to control (E(max)82%+/- 12% vs 445 +/- 5%). SMA from Ang II rats showed greater sensitivity during vinpocetine-induced relaxation compared to control (-log of half maximal effective concentration 6.1 +/- 0.3 vs 5.3 +/- 0.1). No differences in sildenafil-induced relaxation were observed. PDE1A and PDE1C expressions in aorta and PDE1A expression in SMA were increased in Ang II rats. cGMP production, which is decreased in arteries from Ang II rats, was restored after PDE1 blockade. We conclude that PDE1 activation reduces cGMP bioavailability in arteries from Ang II, contributing to increased contractile responsiveness. (Hypertension. 2011;57[part 2]:655-663.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IR) is an antigen independent inflammatory process that causes tissue damage. After IR, kidneys up-regulate leukocyte adhesion molecules and toll-like receptors (TLRs). Moreover, injured kidneys can also secrete factors (i.e. heat shock protein) which bind to TLRs and trigger intracellular events culminating with the increase in the gene expression of inflammatory cytokines. FTY720 is an immunomodulatory compound and protects at least in part kidneys submitted to IR. The mechanisms associated with FTY720`s beneficial effects on kidneys after IR remain elusive. We investigated whether FTY720 administration in mice submitted to kidney IR is associated with modulation of TLR2 and TLR4 expression. C57BL/6 mice submitted to 30 min of renal pedicles clamp were evaluated for serum parameters (creatinine, urea and nitric oxide), kidney histology, spleen and kidney infiltrating cells expression of TLR2 and TLR4, resident kidney cells expression of TLR2 and TLR4 and IL-6 protein expression in kidney. FTY720-treated mice presented decrease in serum creatinine, urea and nitric oxide, diminished expression of TLR2 and TLR4 both in spleen and kidney infiltrating cells, and reduced kidney IL-6 protein expression in comparison with IR non-treated mice. However, acute tubular necrosis was present both in IR non-treated and IR + FTY720-treated groups. Also, FTY720 did not prevent TLR2 and TLR4 expression in kidney resident cells. In conclusion, FTY720 can promote kidney function recovery after IR by reducing the inflammatory process. Further studies are needed in order to establish whether TLR2 and TLR4 down regulation should be therapeutically addressed as protective targets of renal function and structure after IR. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims: Na(+), K(+)-ATPase activity contributes to the regulation of vascular contractility and it has been suggested that vascular Na(+), K(+)-ATPase activity may be altered during the progression of diabetes; however the mechanisms involved in the altered Na(+), K(+)-ATPase activity changes remain unclear. Thus, the aim of the present study was to evaluate ouabain-sensitive Na(+), K(+)-ATPase activity and the mechanism(s) responsible for any alterations on this activity in aortas from 1- and 4-week streptozotocin-pretreated (50 mg kg(-1), i.v.) rats. Main methods: Aortic rings were used to evaluate the relaxation induced by KCl (1-10 mM) in the presence and absence of ouabain (0.1 mmol/L) as an index of ouabain-sensitive Na(+), K(+)-ATPase activity. Protein expression of COX-2 and p-PKC-beta II in aortas were also investigated. Key findings: Ouabain-sensitive Na(+), K(+)-ATPase activity was unaltered following 1-week of streptozotocin administration, but was increased in the 4-week diabetic aorta (27%). Endothelium removal or nitric oxide synthase inhibition with L-NAME decreased ouabain-sensitive Na(+), K(+)-ATPase activity only in control aortas. In denuded aortic rings, indomethacin. NS-398, ridogrel or Go-6976 normalized ouabain-sensitive Na(+), K(+)-ATPase activity in 4-week diabetic rats. In addition, COX-2 (51%) and p-PKC-beta II (59%) protein expression were increased in 4-week diabetic aortas compared to controls. Significance: In conclusion, diabetes led to a time-dependent increase in ouabain-sensitive Na(+), K(+)-ATPase activity. The main mechanism involved in this activation is the release of TxA(2)/PGH(2) by COX-2 in smooth muscle cells, linked to activation of the PKC pathway. (C) 2010 Elsevier Inc. All rights reserved.