989 resultados para O MIXED-OXIDE
Resumo:
This is the first study to investigate alternative fertilisation strategies to increase cereal production while reducing greenhouse gas emissions from the most common soil type in subtropical regions. The results of this research will contribute to define future farming practices to achieve global food security and mitigate climate change. The study established that introducing legumes in cropping systems is the most agronomically viable and environmentally sustainable fertilisation strategy. Importantly, this strategy can be widely adopted in subtropical regions since it is economically accessible, requires little know-how transfer and technology investment, and can be profitable in both low- and high-input cropping systems.
Resumo:
This thesis investigated the complexity of busway operation with stopping and non-stopping buses using field data and microscopic simulation modelling. The proposed approach made significant recommendations to transit authorities to achieve the most practicable system capacity for existing and new busways. The empirical equations developed in this research and newly introduced analysis methods will be ideal tools for transit planners to achieve optimal reliability of busways.
Resumo:
Background Influenza infection during pregnancy is associated with significant morbidity and mortality. Immunisation against influenza is recommended during pregnancy in several countries but uptake of vaccine is poor. There are limited data on vaccine uptake, and the determinants of vaccination, in Australian Aboriginal and/or Torres Islander women during pregnancy. This study aimed to establish an appropriate methodology and collect pilot data on vaccine uptake and attitudes towards, and perceptions of, maternal influenza vaccination in that population in order to inform the development of larger studies. Methods A mixed-methods study comprised of a cross-sectional survey and yarning circles (focus groups) amongst Aboriginal and Torres Strait Islander women attending two primary health care services. The women were between 28 weeks gestation and less than 16 weeks post-birth. These data were supplemented by data collected in an ongoing national Australian study of maternal influenza vaccination. Aboriginal research officers collected community data and data from the yarning circles which were based on a narrative enquiry framework. Descriptive statistics were used to analyse quantitative data and thematic analyses were applied to qualitative data. Results Quantitative data were available for 53 women and seven of these women participated in the yarning circles. The proportion of women who reported receipt of an influenza vaccine during their pregnancy was 9/53. Less than half of the participants (21/53) reported they had been offered the vaccine in pregnancy. Forty-three percent reported they would get a vaccine if they became pregnant again. Qualitative data suggested perceived benefits to themselves and their infants were important factors in the decision to be vaccinated but there was insufficient information available to women to make that choice. Conclusions The rates of influenza immunisation may continue to remain low for Aboriginal and/or Torres Strait Islander women during pregnancy. Access to services and recommendations by a health care worker may be factors in the lower rates. Our findings support the need for larger studies directed at monitoring and understanding the determinants of maternal influenza vaccine uptake during pregnancy in Australian Aboriginal and Torres Strait Islander women. This research will best be achieved using methods that account for the social and cultural contexts of Aboriginal and Torres Strait Islander communities in Australia.
Resumo:
Graphene oxide (GO) has attracted much interest for applications in bone tissue engineering; however, until now the interaction between GO and stem cells, and the in vivo bone-forming ability of GO has not been explored. The aim of this study was to produce a GO-modified β-tricalcium phosphate (β-TCP-GRA) biceramics and then explore the material’s osteogenic capacity in vitro and in vivo, as well as unravel some of the molecular mechanisms behind this. β-TCP-GRA disks and scaffolds were successfully prepared by a simple GO/water suspension soaking method in combination with heat treatment. These scaffolds were found to significantly enhance the proliferation, alkaline phosphatase activity and osteogenic gene expression of human bone marrow stromal cells (hBMSCs), when compared to β-TCP without GO modification (controls). Activation of the Wnt/β-catenin signaling pathway in hBMSCs appears to be the mechanism behind this osteogenic induction by β-TCP-GRA. β-TCP-GRA scaffolds led to an increased rate of in vivo new bone formation compared to β-TCP controls, indicative of the stimulatory effect of GO on in vivo osteogenesis, making GO modification of β-TCP a very promising method for applications in bone tissue engineering, in particular for the regeneration of large bone defects.
Resumo:
This paper describes the use of exploratory focus groups to inform the development of a survey instrument in a sequential phase mixed methods study investigating differences in secondary students’ career choice capability. Five focus groups were conducted with 23 year 10 students in the state of New South Wales (NSW), Australia. Analysis of the focus group data informed the design of the instrument for the second phase of the research project: a large-scale cross-sectional survey. In this paper, we discuss the benefits of using sequential phase mixed method approaches when inquiring into complex phenomena such as human capability.
Resumo:
By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.
Resumo:
The objective of this study was to identify symptom clusters and their effect on quality of life (QOL) of adults with chronic leg ulcers of mixed venous and arterial aetiology. A secondary analysis of data from four existing prospective longitudinal studies conducted by a wound healing research group in Australia was undertaken. A total of 110 patients who met the inclusion criteria were selected for this study. Exploratory factor analysis (EFA) was used to identify symptom clusters and correlational analyses to examine relationships between the identified symptom clusters and QOL. The EFA identified two distinct symptom clusters: a 'systemic symptom cluster' consisting of pain, fatigue and depressive symptoms; and a 'localised-leg symptom cluster' including pain, fatigue, oedema, lower limb inflammation and exudate. Physical QOL correlated significantly with the systemic symptom cluster (r = -0·055, P < 0·0001) and the localised-leg symptom cluster (r = -0·054, P < 0·0001), whereas mental QOL was associated only with the systemic symptom cluster (r = -0·038, P = 0·01). The results suggest that appropriate intervention strategies targeting specific symptom clusters should be developed. Targeting patients with symptom clusters is particularly important because they are at high risk and the most vulnerable for reduced QOL.
Resumo:
Graphene has emerged as one of the most exciting materials of the 21st century due to its unique properties which have demonstrated great potential for applications in energy storage, flexible electronics and multifunctional composites. This thesis has established a new technique for investigating the structure-property relationship of graphene-polymer nanocomposites at micro and nanoscales. The outcomes can help gain a fundamental understanding of the toughening mechanism in these novel nanocomposites and benefit the development of broad graphene based materials and devices.
Resumo:
Background There has been growing interest in mixed species plantation systems because of their potential to provide a range of socio-economic and bio-physical benefits which can be matched to the diverse needs of smallholders and communities. Potential benefits include the production of a range of forest products for home and commercial use; improved soil fertility especially when nitrogen fixing species are included; improved survival rates and greater productivity of species; a reduction in the amount of damage from pests or disease; and improved biodiversity and wildlife habitats. Despite these documented services and growing interest in mixed species plantation systems, the actual planting areas in the tropics are low, and monocultures are still preferred for industrial plantings and many reforestation programs because of perceived higher economic returns and readily available information about the species and their silviculture. In contrast, there are few guidelines for the design and management of mixed-species systems, including the social and ecological factors of successful mixed species plantings. Methods This protocol explains the methodology used to investigate the following question: What is the available evidence for the relative performance of different designs of mixed-species plantings for smallholder and community forestry in the tropics? This study will systematically search, identify and describe studies related to mixed species plantings across tropical and temperate zones to identify the social and ecological factors that affect polyculture systems. The objectives of this study are first to identify the evidence of biophysical or socio-economic factors that have been considered when designing mixed species systems for community and smallholder forestry in the tropics; and second, to identify gaps in research of mixed species plantations. Results of the study will help create guidelines that can assist practitioners, scientists and farmers to better design mixed species plantation systems for smallholders in the tropics.
Resumo:
In early stages of design and modeling, computers and computer applications are often considered an obstacle, rather than a facilitator of the process. Most notably, brainstorms, process modeling with business experts, or development planning, are often performed by a team in front of a whiteboard. While "whiteboarding" is recognized as an effective tool, low-tech solutions that allow remote participants to contribute are still not generally available. This is a striking observation, considering that vast majority of teams in large organizations are distributed teams. And this has also been one of the key triggers behind the project described in this article, where a team of corporate researchers decided to identify state of the art technologies that could facilitate the scenario mentioned above. This paper is an account of a research project in the area of enterprise collaboration, with a strong focus on the aspects of human computer interaction in mixed mode environments, especially in areas of collaboration where computers still play a secondary role. It is describing a currently running corporate research project. © 2012 Springer-Verlag.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.
Resumo:
The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.
Resumo:
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.
Resumo:
As a new research method supplementing the existing qualitative and quantitative approaches, agent-based modelling and simulation (ABMS) may fit well within the entrepreneurship field because the core concepts and basic premises of entrepreneurship coincide with the characteristics of ABMS (McKelvey, 2004; Yang & Chandra, 2013). Agent-based simulation is a simulation method based on agent-based models. The agentbased models are composed of heterogeneous agents and their behavioural rules. By repeatedly carrying out agent-based simulations on a computer, the simulations reproduce each agent’s behaviour, their interactive process, and the emerging macroscopic phenomenon according to the flow of time. Using agent-based simulations, researchers may investigate temporal or dynamic effects of each agent’s behaviours.
Resumo:
The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. This hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits.