951 resultados para Nonlinear simulations
Resumo:
A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
Resumo:
A new procedure to find the limiting range of the photomultiplier linear response of a low-cost, digital oscilloscope-based time-resolved laser-induced luminescence spectrometer (TRLS), is presented. A systematic investigation on the instrument response function with different signal input terminations, and the relationship between the luminescence intensity reaching the photomultiplier and the measured decay time are described. These investigations establish that setting the maximum intensity of the luminescence signal below 0.3V guarantees, for signal input terminations equal or higher than 99.7 ohm, a linear photomultiplier response.
Resumo:
To predict the capacity of the structure or the point which is followed by instability, calculation of the critical crack size is important. Structures usually contain several cracks but not necessarily all of these cracks lead to failure or reach the critical size. So, defining the harmful cracks or the crack size which is the most leading one to failure provides criteria for structure’s capacity at elevated temperature. The scope of this thesis was to calculate fracture parameters like stress intensity factor, the J integral and plastic and ultimate capacity of the structure to estimate critical crack size for this specific structure. Several three dimensional (3D) simulations using finite element method by Ansys program and boundary element method by Frank 3D program were carried out to calculate fracture parameters and results with the aid of laboratory tests (loaddisplacement curve, the J resistance curve and yield or ultimate stress) leaded to extract critical size of the crack. Two types of the fracture which is usually affected by temperature, Elastic and Elasti-Plastic fractures were simulated by performing several linear elastic and nonlinear elastic analyses. Geometry details of the weldment; flank angle and toe radius were also studied independently to estimate the location of crack initiation and simulate stress field in early stages of crack extension in structure. In this work also overview of the structure’s capacity in room temperature (20 ºC) was studied. Comparison of the results in different temperature (20 ºC and -40 ºC) provides a threshold of the structure’s behavior within the defined range.
Resumo:
The use of two-dimensional spectral analysis applied to terrain heights in order to determine characteristic terrain spatial scales and its subsequent use for the objective definition of an adequate grid size required to resolve terrain forcing are presented in this paper. In order to illustrate the influence of grid size, atmospheric flow in a complex terrain area of the Spanish east coast is simulated by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical model using different horizontal grid resolutions. In this area, a grid size of 2 km is required to account for 95% of terrain variance. Comparison among results of the different simulations shows that, although the main wind behavior does not change dramatically, some small-scale features appear when using a resolution of 2 km or finer. Horizontal flow pattern differences are significant both in the nighttime, when terrain forcing is more relevant, and in the daytime, when thermal forcing is dominant. Vertical structures also are investigated, and results show that vertical advection is influenced highly by the horizontal grid size during the daytime period. The turbulent kinetic energy and potential temperature vertical cross sections show substantial differences in the structure of the planetary boundary layer for each model configuration
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
EPR users often face the problem of extracting information from frequently low-resolution and complex EPR spectra. Simulation programs that provide a series of parameters, characteristic of the investigated system, have been used to achieve this goal. This work describes the general aspects of one of those programs, the NLSL program, used to fit EPR spectra applying a nonlinear least squares method. Several motion regimes of the probes are included in this computational tool, covering a broad range of spectral changes. The meanings of the different parameters and rotational diffusion models are discussed. The anisotropic case is also treated by including an orienting potential and order parameters. Some examples are presented in order to show its applicability in different systems.
Resumo:
Blood flow in human aorta is an unsteady and complex phenomenon. The complex patterns are related to the geometrical features like curvature, bends, and branching and pulsatile nature of flow from left ventricle of heart. The aim of this work was to understand the effect of aorta geometry on the flow dynamics. To achieve this, 3D realistic and idealized models of descending aorta were reconstructed from Computed Tomography (CT) images of a female patient. The geometries were reconstructed using medical image processing code. The blood flow in aorta was assumed to be laminar and incompressible and the blood was assumed to be Newtonian fluid. A time dependent pulsatile and parabolic boundary condition was deployed at inlet. Steady and unsteady blood flow simulations were performed in real and idealized geometries of descending aorta using a Finite Volume Method (FVM) code. Analysis of Wall Shear Stress (WSS) distribution, pressure distribution, and axial velocity profiles were carried out in both geometries at steady and unsteady state conditions. The results obtained in thesis work reveal that the idealization of geometry underestimates the values of WSS especially near the region with sudden change of diameter. However, the resultant pressure and velocity in idealized geometry are close to those in real geometry
Resumo:
Min avhandling behandlar hur oordnade material leder elektrisk ström. Bland materialen som studeras finns ledande polymerer, d.v.s. plaster som leder ström, och mer allmänt organiska halvledare. Av de här materialen har man kunnat bygga elektroniska komponenter, och man hoppas på att kunna trycka hela kretsar av organiska material. För de här tillämpningarna är det viktigt att förstå hur materialen själva leder elektrisk ström. Termen oordnade material syftar på material som saknar kristallstruktur. Oordningen gör att elektronernas tillstånd blir lokaliserade i rummet, så att en elektron i ett visst tillstånd är begränsad t.ex. till en molekyl eller ett segment av en polymer. Det här kan jämföras med kristallina material, där ett elektrontillstånd är utspritt över hela kristallen (men i stället har en väldefinierad rörelsemängd). Elektronerna (eller hålen) i det oordnade materialet kan röra sig genom att tunnelera mellan de lokaliserade tillstånden. Utgående från egenskaperna för den här tunneleringsprocessen, kan man bestämma transportegenskaperna för hela materialet. Det här är utgångspunkten för den så kallade hopptransportmodellen, som jag har använt mig av. Hopptransportmodellen innehåller flera drastiska förenklingar. Till exempel betraktas elektrontillstånden som punktformiga, så att tunneleringssannolikheten mellan två tillstånd endast beror på avståndet mellan dem, och inte på deras relativa orientation. En annan förenkling är att behandla det kvantmekaniska tunneleringsproblemet som en klassisk process, en slumpvandring. Trots de här grova approximationerna visar hopptransportmodellen ändå många av de fenomen som uppträder i de verkliga materialen som man vill modellera. Man kan kanske säga att hopptransportmodellen är den enklaste modell för oordnade material som fortfarande är intressant att studera. Man har inte hittat exakta analytiska lösningar för hopptransportmodellen, därför använder man approximationer och numeriska metoder, ofta i form av datorberäkningar. Vi har använt både analytiska metoder och numeriska beräkningar för att studera olika aspekter av hopptransportmodellen. En viktig del av artiklarna som min avhandling baserar sig på är att jämföra analytiska och numeriska resultat. Min andel av arbetet har främst varit att utveckla de numeriska metoderna och applicera dem på hopptransportmodellen. Därför fokuserar jag på den här delen av arbetet i avhandlingens introduktionsdel. Ett sätt att studera hopptransportmodellen numeriskt är att direkt utföra en slumpvandringsprocess med ett datorprogram. Genom att föra statisik över slumpvandringen kan man beräkna olika transportegenskaper i modellen. Det här är en så kallad Monte Carlo-metod, eftersom själva beräkningen är en slumpmässig process. I stället för att följa rörelsebanan för enskilda elektroner, kan man beräkna sannolikheten vid jämvikt för att hitta en elektron i olika tillstånd. Man ställer upp ett system av ekvationer, som relaterar sannolikheterna för att hitta elektronen i olika tillstånd i systemet med flödet, strömmen, mellan de olika tillstånden. Genom att lösa ekvationssystemet fås sannolikhetsfördelningen för elektronerna. Från sannolikhetsfördelningen kan sedan strömmen och materialets transportegenskaper beräknas. En aspekt av hopptransportmodellen som vi studerat är elektronernas diffusion, d.v.s. deras slumpmässiga rörelse. Om man betraktar en samling elektroner, så sprider den med tiden ut sig över ett större område. Det är känt att diffusionshastigheten beror av elfältet, så att elektronerna sprider sig fortare om de påverkas av ett elektriskt fält. Vi har undersökt den här processen, och visat att beteendet är väldigt olika i endimensionella system, jämfört med två- och tredimensionella. I två och tre dimensioner beror diffusionskoefficienten kvadratiskt av elfältet, medan beroendet i en dimension är linjärt. En annan aspekt vi studerat är negativ differentiell konduktivitet, d.v.s. att strömmen i ett material minskar då man ökar spänningen över det. Eftersom det här fenomenet har uppmätts i organiska minnesceller, ville vi undersöka om fenomenet också kan uppstå i hopptransportmodellen. Det visade sig att det i modellen finns två olika mekanismer som kan ge upphov till negativ differentiell konduktivitet. Dels kan elektronerna fastna i fällor, återvändsgränder i systemet, som är sådana att det är svårare att ta sig ur dem då elfältet är stort. Då kan elektronernas medelhastighet och därmed strömmen i materialet minska med ökande elfält. Elektrisk växelverkan mellan elektronerna kan också leda till samma beteende, genom en så kallad coulombblockad. En coulombblockad kan uppstå om antalet ledningselektroner i materialet ökar med ökande spänning. Elektronerna repellerar varandra och ett större antal elektroner kan leda till att transporten blir långsammare, d.v.s. att strömmen minskar.
Resumo:
Tämä taktiikan tutkimus keskittyy tietokoneavusteisen simuloinnin laskennallisiin menetelmiin, joita voidaan käyttää taktisen tason sotapeleissä. Työn tärkeimmät tuotokset ovat laskennalliset mallit todennäköisyyspohjaisen analyysin mahdollistaviin taktisen tason taistelusimulaattoreihin, joita voidaan käyttää vertailevaan analyysiin joukkue-prikaatitason tarkastelutilanteissa. Laskentamallit keskittyvät vaikuttamiseen. Mallit liittyvät vahingoittavan osuman todennäköisyyteen, jonka perusteella vaikutus joukossa on mallinnettu tilakoneina ja Markovin ketjuina. Edelleen näiden tulokset siirretään tapahtumapuuanalyysiin operaation onnistumisen todennäköisyyden osalta. Pienimmän laskentayksikön mallinnustaso on joukkue- tai ryhmätasolla, jotta laskenta-aika prikaatitason sotapelitarkasteluissa pysyisi riittävän lyhyenä samalla, kun tulokset ovat riittävän tarkkoja suomalaiseen maastoon. Joukkueiden mies- ja asejärjestelmävahvuudet ovat jakaumamuodossa, eivätkä yksittäisiä lukuja. Simuloinnin integroinnissa voidaan käyttää asejärjestelmäkohtaisia predictor corrector –parametreja, mikä mahdollistaa aika-askelta lyhytaikaisempien taistelukentän ilmiöiden mallintamisen. Asemallien pohjana ovat aiemmat tutkimukset ja kenttäkokeet, joista osa kuuluu tähän väitöstutkimukseen. Laskentamallien ohjelmoitavuus ja käytettävyys osana simulointityökalua on osoitettu tekijän johtaman tutkijaryhmän ohjelmoiman ”Sandis”- taistelusimulointiohjelmiston avulla, jota on kehitetty ja käytetty Puolustusvoimien Teknillisessä Tutkimuslaitoksessa. Sandikseen on ohjelmoitu karttakäyttöliittymä ja taistelun kulkua simuloivia laskennallisia malleja. Käyttäjä tai käyttäjäryhmä tekee taktiset päätökset ja syöttää nämä karttakäyttöliittymän avulla simulointiin, jonka tuloksena saadaan kunkin joukkuetason peliyksikön tappioiden jakauma, keskimääräisten tappioiden osalta kunkin asejärjestelmän aiheuttamat tappiot kuhunkin maaliin, ammuskulutus ja radioyhteydet ja niiden tila sekä haavoittuneiden evakuointi-tilanne joukkuetasolta evakuointisairaalaan asti. Tutkimuksen keskeisiä tuloksia (kontribuutio) ovat 1) uusi prikaatitason sotapelitilanteiden laskentamalli, jonka pienin yksikkö on joukkue tai ryhmä; 2) joukon murtumispisteen määritys tappioiden ja haavoittuneiden evakuointiin sitoutuvien taistelijoiden avulla; 3) todennäköisyyspohjaisen riskianalyysin käyttömahdollisuus vertailevassa tutkimuksessa sekä 4) kokeellisesti testatut tulen vaikutusmallit ja 5) toimivat integrointiratkaisut. Työ rajataan maavoimien taistelun joukkuetason todennäköisyysjakaumat luovaan laskentamalliin, kenttälääkinnän malliin ja epäsuoran tulen malliin integrointimenetelmineen sekä niiden antamien tulosten sovellettavuuteen. Ilmasta ja mereltä maahan -asevaikutusta voidaan tarkastella, mutta ei ilma- ja meritaistelua. Menetelmiä soveltavan Sandis -ohjelmiston malleja, käyttötapaa ja ohjelmistotekniikkaa kehitetään edelleen. Merkittäviä jatkotutkimuskohteita mallinnukseen osalta ovat muun muassa kaupunkitaistelu, vaunujen kaksintaistelu ja maaston vaikutus tykistön tuleen sekä materiaalikulutuksen arviointi.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.
On the development of an unstructured grid solver for inert and reactive high speed flow simulations
Resumo:
An unstructured grid Euler solver for reactive compressible flow applications is presented. The method is implemented in a cell centered, finite volume context for unstructured triangular grids. Three different schemes for spatial discretization are implemented and analyzed. Time march is implemented in a time-split fashion with independent integrators for the flow and chemistry equations. The capability implemented is tested for inert flows in a hypersonic inlet and for inert and reactive supersonic flows over a 2-D wedge. The results of the different schemes are compared with each other and with independent calculations using a structured grid code. The strengths and the possible weaknesses of the proposed methods are discussed.
Multiple scales analysis of nonlinear oscillations of a portal frame foundation for several machines
Resumo:
An analytical study of the nonlinear vibrations of a multiple machines portal frame foundation is presented. Two unbalanced rotating machines are considered, none of them resonant with the lower natural frequencies of the supporting structure. Their combined frequencies is set in such a way as to excite, due to nonlinear behavior of the frame, either the first anti-symmetrical mode (sway) or the first symmetrical mode. The physical and geometrical characteristics of the frame are chosen to tune the natural frequencies of these two modes into a 1:2 internal resonance. The problem is reduced to a two degrees of freedom model and its nonlinear equations of motions are derived via a Lagrangian approach. Asymptotic perturbation solutions of these equations are obtained via the Multiple Scales Method.
Resumo:
Coherent vortices in turbulent mixing layers are investigated by means of Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES). Subgrid-scale models defined in spectral and physical spaces are reviewed. The new "spectral-dynamic viscosity model", that allows to account for non-developed turbulence in the subgrid-scales, is discussed. Pseudo-spectral methods, combined with sixth-order compact finite differences schemes (when periodic boundary conditions cannot be established), are used to solve the Navier- Stokes equations. Simulations in temporal and spatial mixing layers show two types of pairing of primary Kelvin-Helmholtz (KH) vortices depending on initial conditions (or upstream conditions): quasi-2D and helical pairings. In both cases, secondary streamwise vortices are stretched in between the KH vortices at an angle of 45° with the horizontal plane. These streamwise vortices are not only identified in the early transitional stage of the mixing layer but also in self-similar turbulence conditions. The Re dependence of the "diameter" of these vortices is analyzed. Results obtained in spatial growing mixing layers show some evidences of pairing of secondary vortices; after a pairing of the primary Kelvin-Helmholtz (KH) vortices, the streamwise vortices are less numerous and their diameter has increased than before the pairing of KH vortices.
Resumo:
The nonlinear interaction between Görtler vortices (GV) and three-dimensional Tollmien-Schlichting (TS) waves nonlinear interaction is studied with a spatial, nonparallel model based on the Parabolized Stability Equations (PSE). In this investigation the effect of TS wave frequency on the nonlinear interaction is studied. As verified in previous investigations using the same numerical model, the relative amplitudes and growth rates are the dominant parameters in GV/TS wave interaction. In this sense, the wave frequency influence is important in defining the streamwise distance traveled by the disturbances in the unstable region of the stability diagram and in defining the amplification rates that they go through.